-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
351 lines (266 loc) · 11.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import argparse
import functools
import glob
import math
import os
import threading
import time
from pathlib import Path
import PIL
import einops
import flax
import jax
import jax.numpy as jnp
import numpy as np
import orbax.checkpoint as ocp
import tqdm
import webdataset as wds
from diffusers import FlaxAutoencoderKL
from flax.jax_utils import replicate
from flax.training import orbax_utils
from flax.training.common_utils import shard_prng_key
from jax.experimental import multihost_utils
from orbax.checkpoint.utils import fully_replicated_host_local_array_to_global_array
from webdataset import TarWriter
from models_jax.convert_torch_to_jax import convert_torch_to_flax_sit
from models_jax.sit import SiT
from samplers_jax import euler_maruyama_sampler4
from utils import download_model
lock = threading.Lock()
def send_file(keep_files=2, remote_path='shard_path2', rng=None, sample_rng=None, label=None, checkpointer=None):
multihost_utils.sync_global_devices('sync device')
with lock:
files = glob.glob('shard_path/*.tar')
files.sort(key=lambda x: os.path.getctime(x), )
if len(files) == 0:
raise NotImplemented()
elif len(files) <= keep_files:
pass
else:
if keep_files == 0:
files = files
else:
files = files[:-keep_files]
# print(files)
dst = remote_path
if 'gs' not in remote_path:
dst = os.getcwd() + '/' + dst
os.makedirs(dst, exist_ok=True)
for file in files:
base_name = os.path.basename(file)
if jax.process_index() == 0:
print(base_name, files)
def send_data_thread(src_file, dst_file):
with wds.gopen(src_file, "rb") as fp_local:
data_to_write = fp_local.read()
with wds.gopen(f'{dst_file}', "wb") as fp:
fp.write(data_to_write)
# fp.flush()
os.remove(src_file)
# send_data_thread(file, f'{dst}/{base_name}')
threading.Thread(target=send_data_thread, args=(file, f'{dst}/{base_name}')).start()
if rng is not None:
rng = fully_replicated_host_local_array_to_global_array(rng)
ckpt = {
'rng': rng,
# 'sample_rng': sample_rng,
'label': label - keep_files
}
# orbax_checkpointer = ocp.PyTreeCheckpointer()
save_args = orbax_utils.save_args_from_target(ckpt)
checkpointer.save(f'{dst}/resume.json', ckpt, save_args=save_args, force=True)
class CustomShardWriter(wds.ShardWriter):
"""
CustomShardWriter to make it suitable for increase shard counter step by jax.process_count()
"""
def __init__(self, progress_count, *args, **kwargs):
self.progress_count = progress_count
super().__init__(*args, **kwargs)
def next_stream(self):
# print('her is next stream')
"""Close the current stream and move to the next."""
self.finish()
self.fname = self.pattern % self.shard
if self.verbose:
print(
"# writing",
self.fname,
self.count,
"%.1f GB" % (self.size / 1e9),
self.total,
)
self.shard += self.progress_count
self.tarstream = TarWriter(self.fname, **self.kw)
self.count = 0
self.size = 0
def create_state():
vae_flax, vae_params = FlaxAutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-ema", local_files_only=False,
local_dir='vae',
cache_dir='vae_flax', from_pt=True)
vae_params = jax.tree_util.tree_map(lambda x: jnp.asarray(np.array(x)), vae_params)
model_kwargs = {
'input_size': 32,
'patch_size': 2,
'hidden_size': 1152,
'depth': 28,
'num_heads': 16,
'class_dropout_prob': 0.1,
'decoder_hidden_size': 1152
# 'norm_layer':None
}
model_jax = SiT(**model_kwargs)
state_dict = download_model('last.pt')
params_torch = {k: v.cpu().numpy() for k, v in state_dict.items()}
params_torch = flax.traverse_util.unflatten_dict(params_torch, sep=".")
params_sit_jax = convert_torch_to_flax_sit(params_torch)
return vae_flax,vae_params,model_jax,params_sit_jax
def test_convert(args):
batch_per_worker = jax.local_device_count() * args.batch_per_core
batch_per_all = args.batch_per_core * jax.device_count()
iteration = math.ceil(args.num_samples / args.batch_per_core / jax.device_count())
b, c, h, w = batch_per_worker, 4, 32, 32
print(f'{threading.active_count()=}')
# jax.distributed.initialize()
vae_flax, vae_params, model_jax, params_sit_jax=create_state()
print(f'this is 3 {threading.active_count()=}')
rng = jax.random.PRNGKey(args.global_seed) + jax.process_index()
rng = shard_prng_key(rng)
total = 0
sampling_kwargs = dict(
model=model_jax,
# latents=z,
# y=y,
num_steps=250,
)
params_sit_jax = replicate(params_sit_jax)
vae_params = replicate(vae_params)
sample_fn = functools.partial(euler_maruyama_sampler4, **sampling_kwargs)
shard_dir_path = Path('shard_path')
shard_dir_path.mkdir(exist_ok=True)
shard_filename = str(shard_dir_path / 'shards-%05d.tar')
print(shard_filename)
@jax.pmap
def go(model_params, vae_params, rng):
rng, new_rng, rng_label, rng_sample = jax.random.split(rng, 4)
z = jax.random.normal(rng, (args.batch_per_core, c, h, w))
y = jax.random.randint(rng_label, (args.batch_per_core,), 0, 999, jnp.int32)
# y = jnp.full((args.batch_per_core,), 2, jnp.int32)
samples_jax = sample_fn(model_params=model_params, latents=z, y=y, rng=rng_sample)
latent = samples_jax / 0.18215
img = vae_flax.apply({'params': vae_params}, latent, method=vae_flax.decode).sample
img = (img + 1) / 2.
img = jnp.clip(img * 255, 0, 255)
return img, y, new_rng
counter = 0
lock = threading.Lock()
def thread_write(images, class_labels, sink):
images = np.array(images).astype(np.uint8)
class_labels = np.array(class_labels)
with lock:
nonlocal counter
for img, cls_label in zip(images, class_labels):
sink.write({
"__key__": "%010d" % counter,
"jpg": PIL.Image.fromarray(img),
"cls": int(cls_label),
})
counter += 1
if jax.process_index() == 0:
print(counter, images.shape)
data_per_shard = args.data_per_shard
per_process_generate_data = args.batch_per_core * jax.local_device_count()
assert data_per_shard % per_process_generate_data == 0
iter_per_shard = data_per_shard // per_process_generate_data
sink = CustomShardWriter(
pattern=shard_filename,
maxcount=data_per_shard,
maxsize=3e10,
start_shard=jax.process_index(),
verbose=jax.process_index() == 0,
progress_count=jax.process_count()
# maxsize=shard_size,
)
checkpointer = ocp.AsyncCheckpointer(ocp.PyTreeCheckpointHandler())
# ckpt = {
# 'rng': rng,
# 'label': 1
# }
# ckpt = checkpointer.restore(args.output_dir, item=ckpt)
# rng = ckpt['rng']
# start_label = ckpt['label']
start_label=0
for i in tqdm.tqdm(range(start_label,iteration)):
samples_jax, labels, rng = go(params_sit_jax, vae_params, rng)
samples_jax = einops.rearrange(samples_jax, 'n b c h w -> (n b) h w c')
labels = einops.rearrange(labels, 'n b -> (n b) ')
threading.Thread(target=thread_write,
args=(
samples_jax, labels, sink,)).start()
if (i+1)%iter_per_shard==0:
send_file(3, args.output_dir, rng, sample_rng=None, label=i, checkpointer=checkpointer)
while threading.active_count() > 3:
print(f'{threading.active_count()=}')
time.sleep(1)
print('now send file')
send_file(0, args.output_dir, rng, sample_rng=None, label=i, checkpointer=checkpointer)
while threading.active_count() > 3:
print(f'{threading.active_count()=}')
time.sleep(1)
"""
start_label=0
if args.resume:
dst = args.output_dir + '/' + 'resume.json'
if 'gs' not in dst:
dst = os.getcwd() + '/' + dst
ckpt = {
'rng': rng,
'sample_rng': sample_rng,
'label': 1
}
ckpt = checkpointer.restore(dst, item=ckpt)
rng = ckpt['rng']
sample_rng = ckpt['sample_rng']
start_label=ckpt['label']
# print(ckpt)
"""
"""
abel in tqdm.trange()
for label in range(start_label, args.per_process_shards):
print(label)
for i in tqdm.tqdm(range(iter_per_shard), disable=not jax.process_index() == 0):
rng, sample_rng, images, class_labels = test_sharding_jit(rng, sample_rng, converted_jax_params, vae_params,
label)
local_images = collect_process_data(images)
local_class_labels = collect_process_data(class_labels)
threading.Thread(target=thread_write,
args=(
local_images, local_class_labels, sink, label,
True if i == iter_per_shard - 1 else False)).start()
send_file(3, args.output_dir, rng, sample_rng, label, checkpointer)
while threading.active_count() > 2:
print(f'{threading.active_count()=}')
time.sleep(1)
sink.close()
print('now send file')
send_file(0, args.output_dir, rng, sample_rng, label, checkpointer)
while threading.active_count() > 2:
print(f'{threading.active_count()=}')
time.sleep(1)
"""
if __name__ == "__main__":
jax.distributed.initialize()
parser = argparse.ArgumentParser()
# parser.add_argument("--output-dir", default="shard_path2")
# parser.add_argument("--output-dir", default="gs://shadow-center-2b/imagenet-generated-100steps-cfg1.75")
parser.add_argument("--output-dir", default="gs://musk-center-2b/imagenet-generated-sit-250steps-50m")
# parser.add_argument("--seed", type=int, default=7)
# parser.add_argument("--sample-seed", type=int, default=24)
# parser.add_argument("--cfg", type=float, default=1.5)
parser.add_argument("--data-per-shard", type=int, default=8192) #2048
# parser.add_argument("--per-process-shards", type=int, default=400)
# parser.add_argument("--per-device-batch", type=int, default=128) #128
# parser.add_argument("--resume", action="store_true", default=False)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--batch-per-core", type=int, default=64)
parser.add_argument("--num-samples", type=int, default=50000000)
test_convert(parser.parse_args())