-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pointnet2_cls.py
211 lines (198 loc) · 9.7 KB
/
train_pointnet2_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""ModelNet training script."""
import argparse
import datetime
import logging
import pprint
import os
import sys
import time
import numpy as np
import torch
import torch.nn.functional as F
from pointnet2 import PointNet2SSG, PointNet2MSG
from modelnet.modelnet import ModelNetCls, PCAugmentation, collate_fn
def parse_args():
"""Argument parser."""
parser = argparse.ArgumentParser(description='Argument parser for training ModelNet 40')
parser.add_argument('--data_path', type=str, default=None, help='Path for modelnet data')
parser.add_argument('--root_path', type=str, default='.default', help='Root path to save everything')
parser.add_argument('--dataset', type=str, default='modelnet40', help='Which dataset to train and test on')
parser.add_argument('--cuda_on', type=bool, default=True, help='Whether to train and test on GPUs')
parser.add_argument('--rng_seed', type=int, default=-1, help='Random seed')
parser.add_argument('--batch_size', type=int, default=16, help='Batch size for training')
parser.add_argument('--resume', type=str, default=None, help='Resume from checkpoint')
parser.add_argument('--num_workers', type=int, default=4, help='No of workers for data loading')
parser.add_argument('--epochs', type=int, default=250, help='Total epochs to go through for training')
parser.add_argument('--lr', '--learning-rate', type=float, default=1e-3, help='initial learning rate')
parser.add_argument('--min_lr', type=float, default=1e-5, help='Minimal value of learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='lr momentum for SGD')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='Weight decay for optimizer')
parser.add_argument('--gamma', type=float, default=0.7, help='Gamma update for optimizer')
parser.add_argument('--stepsize', type=int, default=20, help='How many epochs should decrease lr')
parser.add_argument('--optimizer', type=str, default='adam', help='Which optimizer to use (SGD/ADAM)')
parser.add_argument('--num_points', type=int, default=1024, help='No of datapoints for each model')
parser.add_argument('--snapshot_interval', type=int, default=50, help='How many epochs should make a snapshot')
parser.add_argument('--test_interval', type=int, default=1, help='How many epochs should run test; negative means dont run')
parser.add_argument('--test_batch_size', type=int, default=32, help='Batch size for testing')
parser.add_argument('--multigpu', type=bool, default=False, help='Whether to train on multiple gpus')
parser.add_argument('--bn_momentum', type=float, default=0.5, help='Initial value of bn momentum')
parser.add_argument('--bn_stepsize', type=int, default=20, help='How many epoch should decrease bn momentum')
parser.add_argument('--bn_gamma', type=float, default=0.5, help='Drease factor for bn momentum update')
parser.add_argument('--bn_min_momentum', type=float, default=0.01, help='Minimal value of bn momentum')
parser.add_argument('--use_msg', action='store_true', help='Use multi-scale grouping')
args = parser.parse_args()
return args
def setup_logging(name, filename=None):
"""Utility for every script to call on top-level.
If filename is not None, then also log to the filename."""
FORMAT = '[%(levelname)s %(asctime)s] %(filename)s:%(lineno)4d: %(message)s'
DATEFMT = '%Y-%m-%d %H:%M:%S'
logging.root.handlers = []
handlers = [logging.StreamHandler(stream=sys.stdout)]
if filename is not None:
handlers.append(logging.FileHandler(filename, mode='w'))
logging.basicConfig(
level=logging.INFO,
format=FORMAT,
datefmt=DATEFMT,
handlers=handlers
)
logger = logging.getLogger(name)
return logger
def train_model(args):
"""Main function for training classification model."""
dataset = ModelNetCls(args.data_path, modelnet40=(args.dataset=='modelnet40'),
train=True, transform=PCAugmentation(),
num_points=args.num_points)
if args.use_msg:
point_net = PointNet2MSG(3, 40)
else:
point_net = PointNet2SSG(3, 40)
if args.cuda_on:
point_net = point_net.cuda()
for m in point_net.modules():
if isinstance(m, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d)):
m.momentum = args.bn_momentum
if args.multigpu:
point_net = torch.nn.DataParallel(point_net)
if args.optimizer.lower() == 'sgd':
optimizer = torch.optim.SGD(point_net.parameters(), lr=args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.optimizer.lower() == 'adam':
optimizer = torch.optim.Adam(point_net.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
else:
raise ValueError('Unknown optimizer: {}'.format(args.optimizer))
logger = logging.getLogger(__name__)
for e in range(args.epochs):
etic = time.time()
point_net.train()
logger.info('Training on epoch %d/%d', e+1, args.epochs)
loader = torch.utils.data.DataLoader(
dataset, args.batch_size, num_workers=args.num_workers,
shuffle=True, collate_fn=collate_fn, pin_memory=True,
drop_last=True,
)
tic = time.time()
for batch_idx, (data, labels) in enumerate(loader):
optimizer.zero_grad()
if args.cuda_on:
data, labels = data.cuda(), labels.cuda()
out = point_net(data)
_, predicted = out.max(dim=-1)
loss = F.cross_entropy(out, labels)
train_accuracy = (predicted==labels).sum().item() / len(labels)
if time.time() - tic > 5: # 5 sec
logger.info(
'%d/%d for epoch %d, '
'Cls loss: %.3f, '
'train acc: %.3f',
batch_idx*args.batch_size, len(dataset), e+1,
loss.item(), train_accuracy
)
tic = time.time()
loss.backward()
optimizer.step()
if args.snapshot_interval > 0 and \
((e + 1) % args.snapshot_interval == 0):
filename = os.path.join(args.root_path, '{}.{}-{}.pth'.format(
'PointNet2Cls', args.dataset, e+1
))
logger.info('Saving model to %s', filename)
torch.save(point_net.state_dict(), filename)
if args.test_interval > 0 and ((e+1) % args.test_interval == 0):
logger.info('Running test for epoch %d/%d', e+1, args.epochs)
ins_acc, cls_acc = test_model(point_net, args)
logger.info('Instance accuracy: %.3f, class accuracy: %.3f',
ins_acc, cls_acc)
# update learning rate
if (args.stepsize > 0) and ((e+1) % args.stepsize == 0):
args.lr = max(args.lr * args.gamma, args.min_lr)
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
logger.info('Learning rate set to %g', args.lr)
# update bn momentum
if (args.bn_stepsize > 0) and ((e+1) % args.bn_stepsize == 0):
args.bn_momentum = max(args.bn_momentum*args.bn_gamma,
args.bn_min_momentum)
for m in point_net.modules():
if isinstance(m, (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d)):
m.momentum = args.bn_momentum
logger.info('BatchNorm momentum set to %g', args.bn_momentum)
logger.info('Elapsed time for epoch %d: %.3fs', e+1, time.time()-etic)
if args.snapshot_interval > 0:
filename = os.path.join(args.root_path, '{}.{}.pth'.format(
'PointNet2Cls', args.dataset
))
logger.info('Saving final model to %s', filename)
torch.save(point_net.state_dict(), filename)
def test_model(model, args):
"""Run test on model."""
model.eval()
dataset = ModelNetCls(args.data_path, modelnet40=(args.dataset=='modelnet40'),
train=False, transform=None,
num_points=args.num_points)
loader = torch.utils.data.DataLoader(
dataset, args.test_batch_size, shuffle=False, num_workers=args.num_workers,
collate_fn=collate_fn, pin_memory=True, drop_last=False
)
num_classes = len(np.unique(dataset.labels))
num_per_class = [(dataset.labels==i).sum() for i in range(num_classes)]
class_hit = [0 for _ in range(num_classes)]
for data, labels in loader:
if args.cuda_on:
data = data.cuda()
out = model(data)
_, predicted = out.max(dim=-1)
predicted = predicted.tolist()
labels = labels.tolist()
for p, t in zip(predicted, labels):
if p == t:
class_hit[p] = class_hit[p] + 1
instance_accuracy = sum(class_hit) / len(dataset)
class_accuracies = [n/total for n, total in zip(class_hit, num_per_class)]
return instance_accuracy, np.mean(class_accuracies)
def main():
args = parse_args()
if not os.path.exists(args.root_path):
os.makedirs(args.root_path)
log_name = os.path.join(
args.root_path,
'{:s}.{:%Y-%m-%d_%H-%M-%S}.{:s}.log'.format(
args.dataset,
datetime.datetime.now(),
'train_test' if args.test_interval > 0 else 'train'
)
)
logger = setup_logging(__name__, log_name)
logger.info(pprint.pformat(args))
if args.rng_seed >= 0:
np.random.seed(args.rng_seed)
torch.manual_seed(args.rng_seed)
torch.cuda.manual_seed_all(args.rng_seed)
train_model(args)
if __name__ == "__main__":
main()