-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmaprect.m
58 lines (47 loc) · 1.74 KB
/
maprect.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
function [tm,im] = maprect(tr,pr)
%MAPRECT find the tree-to-rectangle mappings.
% [TM,IM] = MAPRECT(TR,PR) returns the tree-to-rectangle
% and rectangle-to-tree mappings for a given aabb-tree TR
% and a collection of query vertices PI.
%
% The tree-to-item mapping TM is a structure representing
% the intersection of the items PI with the tree TR. TM.II
% is an M-by-1 array of tree indices and TM.LL is an
% M-by-1 cell array of item lists. Specifically, items in
% the list TM.LL{JJ} intersect with the node TM.II(JJ).
%
% The item-to-tree mapping IM is a structure representing
% the inverse mapping. IM.II is an N-by-1 array of item
% indices and IM.LL is an N-by-1 cell array of node lists.
% Specifically, nodes in the list IM.LL{JJ} intersect with
% the item IM.II(JJ).
%
% See also QUERYSET, MAPVERT, MAKETREE
% Darren Engwirda : 2017 --
% Email : de2363@columbia.edu
% Last updated : 09/04/2017
%----------------------- call SCANTREE to do the actual work
if (nargout == +1)
[tm ] = scantree(tr,pr,@partrect);
else
[tm,im] = scantree(tr,pr,@partrect);
end
end
function [j1,j2] = partrect(pr,b1,b2)
%PARTRECT partition points between boxes B1,B2 for SCANTREE.
j1 = true(size(pr,1),1) ;
j2 = true(size(pr,1),1) ;
nd = size(b1,2) / +2;
for ax = +1 : nd
%--------------- remains TRUE if inside bounds along axis AX
j1 = j1 & pr(:,ax+nd*1) ...
>= b1( ax+nd*0) ...
& pr(:,ax+nd*0) ...
<= b1( ax+nd*1) ;
%--------------- remains TRUE if inside bounds along axis AX
j2 = j2 & pr(:,ax+nd*1) ...
>= b2( ax+nd*0) ...
& pr(:,ax+nd*0) ...
<= b2( ax+nd*1) ;
end
end