-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfindpoly.m
180 lines (148 loc) · 5.95 KB
/
findpoly.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
function [ip,ix,tr] = findpoly(pp,ee,pj,varargin)
%FINDPOLY point-in-polygon queries for polygon collections.
% [IP,IX] = FINDPOLY(PP,EE,PJ) returns the set of polygons
% that enclose the points in the distribution PJ. Polygons
% are specified via the cell arrays:
%
% PP{kk} = [X11,Y11;X22,Y22;...;XNN,YNN];
% EE{kk} = [E11,E12;E21,E22;...;EM1;EM2];
%
% where PP{kk} defines the vertex coordinates of the KK-th
% polygon, and EE{kk} defines its edges. Each edge is
% specified as a pair of vertex indices, such that
% PP{kk}(EE{kk}(II,1),:) and PP{kk}(EE{kk}(II,2),:) define
% the endpoints of the II-th edge in the KK-th polygon.
%
% A set of intersecting polygons is returned for each
% query point in PJ, such that the II-th point is associa-
% ted with the polygons IX(IP(II,1):IP(II,2)). Unenclosed
% points have IP(II,1) == +0.
%
% In general, query points may be matched to multiple pol-
% gons (in cases where polygons overlap).
%
% [IP,IX,TR] = FINDPOLY(PP,EE,PJ) additionally returns the
% supporting aabb-tree used internally to compute the que-
% ry. If the underlying collection [PP,EE] is static, the
% tree TR may be passed to subsequent calls, via [...] =
% FINDPOLY(PP,EE,PJ,TR). This syntax may lead to improved
% performance, especially when the number of polygons
% is large w.r.t. the number of query points. Note that in
% such cases the underlying polygons are NOT permitted to
% change between calls, or erroneous results may be retur-
% ned. Additional parameters used to control the creation
% of the underlying aabb-tree may also be passed via [...]
% = FINDPOLY(PP,EE,PI,TR,OP). See MAKETREE for additional
% information.
%
% See also MAKETREE, EXCHANGE, QUERYSET
% Given K polygons (each with M edges on average) the task
% is to find the enclosing polygons for a set of N points.
% The (obvious) naive implementation is expensive, leading
% to O(K*M*N) complexity (based on a simple loop over all
% polygons, and calling a standard points-in-polygon test
% for each individually). This code aims to do better:
%
% * Employing a "fast" inpolygon routine, reducing the comp-
% lexity of each points-in-polygon test (based on spatial
% sorting) to approximately O((N+M)*log(N)).
%
% * Employing a spatial tree (an aabb-tree) to localise each
% points-in-polygon query within a spatially local "tile".
% This typically gains another logarithmic factor, so is a
% big win for large K.
% Darren Engwirda : 2020 --
% Email : de2363@columbia.edu
% Last updated : 29/03/2020
ip = []; ix = []; tr = []; op = [];
filename = mfilename('fullpath');
filepath = fileparts( filename );
addpath([filepath,'/aabb-tree']);
addpath([filepath,'/poly-test']);
%---------------------------------------------- basic checks
if (nargin < +3 || nargin > +5)
error('findpoly:incorrectNumInputs', ...
'Incorrect number of inputs.');
end
%------------------------------- fast return on empty inputs
if (isempty(pp)), return; end
if (isempty(pj)), return; end
%------------------------------- extract user-defined inputs
if (nargin >= +4), tr = varargin{1}; end
if (nargin >= +5), op = varargin{2}; end
%---------------------------------------------- basic checks
if (~iscell(pp) || ~iscell(ee) || ...
~isnumeric(pj) )
error('findpoly:incorrectInputClass', ...
'Incorrect input class.') ;
end
%---------------------------------------------- basic checks
if (any(cellfun('ndims', pp) ~= +2) || ...
any(cellfun('size', pp, 2) ~= +2))
error('findpoly:incorrectDimensions', ...
'Incorrect input dimensions.');
end
if (any(cellfun('ndims', ee) ~= +2) || ...
any(cellfun('size', ee, 2) ~= +2))
error('findpoly:incorrectDimensions', ...
'Incorrect input dimensions.');
end
%------------------------------- test query array for VERT's
if (ndims(pj) ~= +2 || size(pj,2) ~= +2 )
error('findpoly:incorrectDimensions', ...
'Incorrect input dimensions.');
end
%---------------------------------------------- basic checks
if (~isempty(tr) && ~isstruct(tr) )
error('findpoly:incorrectInputClass', ...
'Incorrect input class.') ;
end
if (~isempty(op) && ~isstruct(op) )
error('findpoly:incorrectInputClass', ...
'Incorrect input class.') ;
end
if (isempty(tr))
%------------------------------ compute aabb's for poly-sets
bb = zeros(numel(ee),4);
xx = cellfun( ...
@min,pp,'uniformoutput',false) ;
xx = [xx{:}];
bb(:,1) = xx(1:2:end-1);
bb(:,2) = xx(2:2:end-0);
xx = cellfun( ...
@max,pp,'uniformoutput',false) ;
xx = [xx{:}];
bb(:,3) = xx(1:2:end-1);
bb(:,4) = xx(2:2:end-0);
%------------------------------ compute aabb-tree for aabb's
if (isempty(op) || ...
~isfield(op,'nobj'))
op.nobj = +4; % "aggressive" tree
end
tr = maketree(bb,op); % compute aabb-tree
end
%------------------------------ compute tree-to-vert mapping
tm = mapvert(tr,pj) ;
%------------------------------ compute vert-to-poly queries
[ii,px,ix] = ...
queryset(tr,tm,@polykern,pj,pp,ee) ;
%------------------------------ re-index onto full obj. list
ip = zeros(size(pj,1),2);
ip( :,2) = -1 ;
if (isempty(ii)), return; end
ip(ii,:) = px ;
end
function [ip,ix] = polykern(pk,ik,pj,pp,ee)
%POLYKERN compute the "point vs. poly" matches within a tile
Ip = cell(length(ik),1);
Ix = cell(length(ik),1);
for kk = 1:length(ik)
in = inpoly2( ...
pj(pk,:),pp{ik(kk)},ee{ik(kk)}) ;
Ip{kk} = pk(in) ;
Ix{kk} = ...
ik(kk) * ones(length(Ip{kk}),1) ;
end
ip = vertcat(Ip{:}) ;
ix = vertcat(Ix{:}) ;
end