forked from tufts-ml/SupContrast
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_supcon.py
418 lines (358 loc) · 16.9 KB
/
main_supcon.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
from __future__ import print_function
import os
import sys
import argparse
import time
import math
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from contrast_acc import contrastive_acc, test_contrastive_acc, test_contrastive_acc_knn
from main_ce import set_loader
from util import AverageMeter
from util import adjust_learning_rate, warmup_learning_rate, set_optimizer, save_model
from networks.resnet_big import SupConResNet
from losses import SupConLoss
from revised_losses import MultiviewSINCERELoss, MultiviewEpsSupInfoNCELoss
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=10,
help='print frequency')
parser.add_argument('--save_freq', type=int, default=50,
help='save frequency')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
parser.add_argument('--num_workers', type=int, default=16,
help='num of workers to use')
parser.add_argument('--epochs', type=int, default=1000,
help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05,
help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='700,800,900',
help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1,
help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9,
help='momentum')
# model dataset
parser.add_argument('--model', type=str, default='resnet50')
parser.add_argument('--dataset', type=str, default='cifar10',
choices=['cifar10', 'cifar100', 'imagenet100', 'imagenet', 'cifar2',
'aircraft', 'cars', 'path'],
help='dataset')
parser.add_argument('--valid_split', type=float, default=0,
help="proportion of train data to use for validation set")
parser.add_argument('--mean', type=str,
help='mean of dataset in path in form of str tuple')
parser.add_argument('--std', type=str,
help='std of dataset in path in form of str tuple')
parser.add_argument('--data_folder', type=str,
default=None, help='path to custom dataset')
parser.add_argument('--size', type=int, default=32,
help='size of images after resizing')
# method
parser.add_argument('--method', type=str, default='SupCon',
choices=['SINCERE', 'SupCon', 'SimCLR', 'EpsSupInfoNCE'],
help='choose method')
# temperature
parser.add_argument('--temp', type=float, default=0.07,
help='temperature for loss function')
# other setting
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--trial', type=str, default='0',
help='id for recording multiple runs')
opt = parser.parse_args()
# check if dataset is path that passed required arguments
if opt.dataset == 'path':
assert opt.data_folder is not None \
and opt.mean is not None \
and opt.std is not None
# set the path according to the environment
if opt.data_folder is None:
if opt.dataset == 'imagenet100':
opt.data_folder = '/cluster/tufts/hugheslab/datasets/ImageNet100/train/'
elif opt.dataset == 'imagenet':
opt.data_folder = '/cluster/tufts/hugheslab/datasets/ImageNet/train/'
else:
opt.data_folder = './datasets/'
opt.model_path = './save/SupCon/{}_models'.format(opt.dataset)
opt.tb_path = './save/SupCon/{}_tensorboard'.format(opt.dataset)
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_name = '{}_{}_{}_lr_{}_decay_{}_bsz_{}_temp_{}_trial_{}'.\
format(opt.method, opt.dataset, opt.model, opt.learning_rate,
opt.weight_decay, opt.batch_size, opt.temp, opt.trial)
if opt.cosine:
opt.model_name = '{}_cosine'.format(opt.model_name)
# warm-up for large-batch training,
if opt.batch_size > 256:
opt.warm = True
if opt.warm:
opt.model_name = '{}_warm'.format(opt.model_name)
opt.warmup_from = 0.01
opt.warm_epochs = 10
if opt.cosine:
eta_min = opt.learning_rate * (opt.lr_decay_rate ** 3)
opt.warmup_to = eta_min + (opt.learning_rate - eta_min) * (
1 + math.cos(math.pi * opt.warm_epochs / opt.epochs)) / 2
else:
opt.warmup_to = opt.learning_rate
# add time to model name
opt.model_name += "_" + time.strftime("%Y_%m_%d-%H_%M_%S")
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
os.makedirs(opt.tb_folder, exist_ok=True)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
os.makedirs(opt.save_folder, exist_ok=True)
# write args to log
print(opt)
return opt
def set_model(opt):
model = SupConResNet(name=opt.model)
if torch.cuda.is_available():
if "device" not in opt:
model = model.cuda()
else:
model = model.to(opt.device)
if torch.cuda.device_count() > 1:
model.encoder = torch.nn.parallel.DistributedDataParallel(model.encoder)
cudnn.benchmark = True
return model
def train(train_loader, model, optimizer, epoch, opt, logger):
"""one epoch training"""
sincere_loss_func = MultiviewSINCERELoss(temperature=opt.temp) \
if opt.method != 'EpsSupInfoNCE' else MultiviewEpsSupInfoNCELoss(temperature=opt.temp)
# original implementation does not set base_temperature, but setting here to make
# hyperparameters comparable between implementations
supcon_loss_func = SupConLoss(temperature=opt.temp, base_temperature=opt.temp)
model.train()
av_batch_time = AverageMeter()
av_data_time = AverageMeter()
av_sincere = AverageMeter()
av_supcon = AverageMeter()
av_acc = AverageMeter()
end = time.time()
# change reshuffle split of data across GPUs
if "device" in opt:
train_loader.sampler.set_epoch(epoch)
for idx, (image_aug_tuple, labels) in enumerate(train_loader):
av_data_time.update(time.time() - end)
images = torch.cat([image_aug_tuple[0], image_aug_tuple[1]], dim=0)
if torch.cuda.is_available():
if "device" not in opt:
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
else:
images = images.to(opt.device, non_blocking=True)
labels = labels.to(opt.device, non_blocking=True)
bsz = labels.shape[0]
# warm-up learning rate
warmup_learning_rate(opt, epoch, idx, len(train_loader), optimizer)
# forward
with torch.set_grad_enabled(True):
flat_embeds = model(images)
# reshape from (2B, D) to (B, 2, D)
embeds = torch.cat(
[aug.unsqueeze(1) for aug in torch.split(flat_embeds, [bsz, bsz], dim=0)], dim=1)
# compute losses
# loss is averaged across GPU-specific batches if using multiple GPUs, as in SupCon
# see MoCo v3 for full batch size parallelization with torch's all_gather
sincere_loss = sincere_loss_func(embeds, labels)
supcon_loss = supcon_loss_func(embeds, labels)
# update averages
av_sincere.update(sincere_loss.item(), bsz)
av_supcon.update(supcon_loss.item(), bsz)
# SGD
# always zero in case grad accidentally calculated for non-train epoch
optimizer.zero_grad()
if opt.method == 'SINCERE' or opt.method == 'EpsSupInfoNCE':
sincere_loss.backward()
elif opt.method == 'SupCon':
supcon_loss.backward()
else:
raise ValueError('contrastive method not supported: {}'.
format(opt.method))
optimizer.step()
# compute accuracy
with torch.no_grad():
acc = contrastive_acc(embeds, labels)
av_acc.update(acc.item(), bsz)
# measure elapsed time
av_batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'.format(
epoch, idx + 1, len(train_loader), batch_time=av_batch_time,
data_time=av_data_time))
sys.stdout.flush()
# tensorboard logger
if "device" not in opt or opt.device == 0:
log_folder = "train/"
logger.add_scalar(f"{log_folder}SINCERE", av_sincere.avg, epoch)
logger.add_scalar(f"{log_folder}SupCon", av_supcon.avg, epoch)
logger.add_scalar(f"{log_folder}Accuracy", av_acc.avg, epoch)
# log values independent of forward passes
logger.add_scalar("learning_rate", optimizer.param_groups[0]["lr"], epoch)
return
def valid(train_loader, valid_loader, model, epoch, opt, logger):
"""validation"""
# loggger is given if valid_loader is validation set, otherwise is test set
val_is_test = logger is None
sincere_loss_func = MultiviewSINCERELoss(temperature=opt.temp) \
if opt.method != 'EpsSupInfoNCE' else MultiviewEpsSupInfoNCELoss(temperature=opt.temp)
# original implementation does not set base_temperature, but setting here to make
# hyperparameters comparable between implementations
supcon_loss_func = SupConLoss(temperature=opt.temp, base_temperature=opt.temp)
# caches for data
train_embeds = torch.empty((0, 128))
train_labels = torch.empty((0,))
# caches for test data
if val_is_test:
test_embeds = torch.empty((0, 128))
test_labels = torch.empty((0,))
for i, loader in enumerate([train_loader, valid_loader]):
is_train = i == 0
model.eval()
av_batch_time = AverageMeter()
av_data_time = AverageMeter()
av_sincere = AverageMeter()
av_supcon = AverageMeter()
av_acc_top_1 = AverageMeter()
av_acc_top_5 = AverageMeter()
end = time.time()
# change reshuffle split of data across GPUs
if "device" in opt:
loader.sampler.set_epoch(epoch)
for idx, (image_aug_tuple, labels) in enumerate(loader):
av_data_time.update(time.time() - end)
images = torch.cat([image_aug_tuple[0], image_aug_tuple[1]], dim=0)
if torch.cuda.is_available():
if "device" not in opt:
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
else:
images = images.to(opt.device, non_blocking=True)
labels = labels.to(opt.device, non_blocking=True)
bsz = labels.shape[0]
# forward
with torch.no_grad():
flat_embeds = model(images)
# reshape from (2B, D) to (B, 2, D)
embeds = torch.cat(
[aug.unsqueeze(1) for aug in torch.split(flat_embeds, [bsz, bsz], dim=0)], dim=1)
# cache train outputs
if is_train:
train_embeds = torch.vstack((train_embeds, embeds[:, 0].cpu()))
train_labels = torch.hstack((train_labels, labels.cpu()))
else:
# cache test outputs
if val_is_test:
test_embeds = torch.vstack((test_embeds, embeds[:, 0].cpu()))
test_labels = torch.hstack((test_labels, labels.cpu()))
# compute validation accuracy
av_acc_top_1.update(test_contrastive_acc(
train_embeds.cuda(), embeds[:, 0].cuda(),
train_labels.cuda(), labels.cuda()).item(), bsz)
av_acc_top_5.update(test_contrastive_acc_knn(
train_embeds.cuda(), embeds[:, 0].cuda(),
train_labels.cuda(), labels.cuda(), 5).item(), bsz)
# compute losses (note there's no class balancing sampler for test)
# loss is averaged across GPU-specific batches if using multiple GPUs, as in SupCon
# see MoCo v3 for full batch size parallelization with torch's all_gather
sincere_loss = sincere_loss_func(embeds, labels)
supcon_loss = supcon_loss_func(embeds, labels)
# update averages
av_sincere.update(sincere_loss.item(), bsz)
av_supcon.update(supcon_loss.item(), bsz)
# measure elapsed time
av_batch_time.update(time.time() - end)
end = time.time()
# print info
if (idx + 1) % opt.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'.format(
epoch, idx + 1, len(loader), batch_time=av_batch_time,
data_time=av_data_time))
sys.stdout.flush()
if "device" not in opt or opt.device == 0 and not is_train:
# tensorboard logger
if not val_is_test:
log_folder = "valid/"
logger.add_scalar(f"{log_folder}SINCERE", av_sincere.avg, epoch)
logger.add_scalar(f"{log_folder}SupCon", av_supcon.avg, epoch)
logger.add_scalar(f"{log_folder}Top 1 Accuracy", av_acc_top_1.avg, epoch)
logger.add_scalar(f"{log_folder}Top 5 Accuracy", av_acc_top_5.avg, epoch)
else:
# print output
print(f"Test SINCERE: {av_sincere.avg}")
print(f"Test SupCon: {av_supcon.avg}")
print(f"Test Top 1 Accuracy: {av_acc_top_1.avg}")
print(f"Test Top 5 Accuracy: {av_acc_top_5.avg}")
# save caches
torch.save(train_embeds, os.path.join(opt.save_folder, "train_embeds.pth"))
torch.save(train_labels, os.path.join(opt.save_folder, "train_labels.pth"))
torch.save(test_embeds, os.path.join(opt.save_folder, "test_embeds.pth"))
torch.save(test_labels, os.path.join(opt.save_folder, "test_labels.pth"))
def test(model, opt):
train_loader, _, test_loader = set_loader(opt, contrast_trans=True, for_test=True)
valid(train_loader, test_loader, model, 0, opt, None)
def main(opt):
# build data loader
train_loader, valid_loader, _ = set_loader(opt, contrast_trans=True)
# build model
model = set_model(opt)
# build optimizer
optimizer = set_optimizer(opt, model)
# tensorboard, only for first process if multiple
if "device" not in opt or opt.device == 0:
logger = SummaryWriter(log_dir=opt.tb_folder)
# training routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(opt, optimizer, epoch)
# train for one epoch
time1 = time.time()
train(train_loader, model, optimizer, epoch, opt, logger)
time2 = time.time()
# use valid_loader if present
if epoch % 5 == 0 and valid_loader is not None:
valid(train_loader, valid_loader, model, epoch, opt, logger)
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
# checkpoint
if epoch % opt.save_freq == 0:
save_file = os.path.join(
opt.save_folder, 'ckpt_epoch_{epoch}.pth'.format(epoch=epoch))
save_model(model, optimizer, opt, epoch, save_file)
# save the last model
save_file = os.path.join(
opt.save_folder, 'last.pth')
save_model(model, optimizer, opt, opt.epochs, save_file)
# print test statistics
test(model, opt)
def launch_parallel(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '12355'
# need to use gloo instead of nccl for Windows, but nccl faster on Linux
torch.distributed.init_process_group("nccl", rank=rank, world_size=world_size)
opt = parse_option()
# modify options for parallel processing
opt.device = rank # device not in opt if not using parallel processing
opt.batch_size = opt.batch_size // world_size
main(opt)
if __name__ == '__main__':
parallel = False
if not parallel:
main(parse_option())
else:
world_size = 2
torch.multiprocessing.spawn(launch_parallel, (world_size,), world_size)