This is quick evaluation of everything, which not fit in any other category on ImageNet-2012.
The architecture is similar to CaffeNet, but has differences:
- Images are resized to small side = 128 for speed reasons.
- fc6 and fc7 layers have 2048 neurons instead of 4096.
- Networks are initialized with LSUV-init
ReLU non-linearity, fc6 and fc7 layer only
Name | Accuracy | LogLoss | Comments |
---|---|---|---|
Default | 0.471 | 2.36 | bias lr_rate = 2x weights lr_rate |
1x | 0.470 | 2.37 | bias lr_rate = 1x weights lr_rate |
5x | 0.472 | 2.35 | bias lr_rate = 5x weights lr_rate |
NoBias | 0.445 | 2.50 | Biases initialized with zeros, lr_rate = 0 |
P.S. Logs are merged from lots of "save-resume", because were trained at nights, so plot "Accuracy vs. seconds" will give weird results.