@@ -37,13 +37,13 @@ def __init__(
37
37
factory_kwargs = {"device" : device , "dtype" : dtype }
38
38
super ().__init__ ()
39
39
40
- self .register_buffer ("_mu " , None )
41
- self .register_buffer ("_cov " , None )
40
+ self .register_buffer ("mu " , None )
41
+ self .register_buffer ("cov " , None )
42
42
self .register_buffer ("energy" , None )
43
43
self .register_buffer ("total_charge" , torch .tensor (0.0 , ** factory_kwargs ))
44
44
45
- self ._mu = torch .as_tensor (mu , ** factory_kwargs )
46
- self ._cov = torch .as_tensor (cov , ** factory_kwargs )
45
+ self .mu = torch .as_tensor (mu , ** factory_kwargs )
46
+ self .cov = torch .as_tensor (cov , ** factory_kwargs )
47
47
self .energy = torch .as_tensor (energy , ** factory_kwargs )
48
48
if total_charge is not None :
49
49
self .total_charge = torch .as_tensor (total_charge , ** factory_kwargs )
@@ -467,8 +467,8 @@ def as_particle_beam(self, num_particles: int) -> "ParticleBeam": # noqa: F821
467
467
cov_taup = self .cov_taup ,
468
468
energy = self .energy ,
469
469
total_charge = self .total_charge ,
470
- device = self ._mu .device ,
471
- dtype = self ._mu .dtype ,
470
+ device = self .mu .device ,
471
+ dtype = self .mu .dtype ,
472
472
)
473
473
474
474
def linspaced (self , num_particles : int ) -> "ParticleBeam" : # noqa: F821
@@ -498,82 +498,82 @@ def linspaced(self, num_particles: int) -> "ParticleBeam": # noqa: F821
498
498
energy = self .energy ,
499
499
total_charge = self .total_charge ,
500
500
species = self .species ,
501
- device = self ._mu .device ,
502
- dtype = self ._mu .dtype ,
501
+ device = self .mu .device ,
502
+ dtype = self .mu .dtype ,
503
503
)
504
504
505
505
@property
506
506
def mu_x (self ) -> torch .Tensor :
507
- return self ._mu [..., 0 ]
507
+ return self .mu [..., 0 ]
508
508
509
509
@property
510
510
def sigma_x (self ) -> torch .Tensor :
511
- return torch .sqrt (torch .clamp_min (self ._cov [..., 0 , 0 ], 1e-20 ))
511
+ return torch .sqrt (torch .clamp_min (self .cov [..., 0 , 0 ], 1e-20 ))
512
512
513
513
@property
514
514
def mu_px (self ) -> torch .Tensor :
515
- return self ._mu [..., 1 ]
515
+ return self .mu [..., 1 ]
516
516
517
517
@property
518
518
def sigma_px (self ) -> torch .Tensor :
519
- return torch .sqrt (torch .clamp_min (self ._cov [..., 1 , 1 ], 1e-20 ))
519
+ return torch .sqrt (torch .clamp_min (self .cov [..., 1 , 1 ], 1e-20 ))
520
520
521
521
@property
522
522
def mu_y (self ) -> torch .Tensor :
523
- return self ._mu [..., 2 ]
523
+ return self .mu [..., 2 ]
524
524
525
525
@property
526
526
def sigma_y (self ) -> torch .Tensor :
527
- return torch .sqrt (torch .clamp_min (self ._cov [..., 2 , 2 ], 1e-20 ))
527
+ return torch .sqrt (torch .clamp_min (self .cov [..., 2 , 2 ], 1e-20 ))
528
528
529
529
@property
530
530
def mu_py (self ) -> torch .Tensor :
531
- return self ._mu [..., 3 ]
531
+ return self .mu [..., 3 ]
532
532
533
533
@property
534
534
def sigma_py (self ) -> torch .Tensor :
535
- return torch .sqrt (torch .clamp_min (self ._cov [..., 3 , 3 ], 1e-20 ))
535
+ return torch .sqrt (torch .clamp_min (self .cov [..., 3 , 3 ], 1e-20 ))
536
536
537
537
@property
538
538
def mu_tau (self ) -> torch .Tensor :
539
- return self ._mu [..., 4 ]
539
+ return self .mu [..., 4 ]
540
540
541
541
@property
542
542
def sigma_tau (self ) -> torch .Tensor :
543
- return torch .sqrt (torch .clamp_min (self ._cov [..., 4 , 4 ], 1e-20 ))
543
+ return torch .sqrt (torch .clamp_min (self .cov [..., 4 , 4 ], 1e-20 ))
544
544
545
545
@property
546
546
def mu_p (self ) -> torch .Tensor :
547
- return self ._mu [..., 5 ]
547
+ return self .mu [..., 5 ]
548
548
549
549
@property
550
550
def sigma_p (self ) -> torch .Tensor :
551
- return torch .sqrt (torch .clamp_min (self ._cov [..., 5 , 5 ], 1e-20 ))
551
+ return torch .sqrt (torch .clamp_min (self .cov [..., 5 , 5 ], 1e-20 ))
552
552
553
553
@property
554
554
def cov_xpx (self ) -> torch .Tensor :
555
- return self ._cov [..., 0 , 1 ]
555
+ return self .cov [..., 0 , 1 ]
556
556
557
557
@property
558
558
def cov_ypy (self ) -> torch .Tensor :
559
- return self ._cov [..., 2 , 3 ]
559
+ return self .cov [..., 2 , 3 ]
560
560
561
561
@property
562
562
def cov_taup (self ) -> torch .Tensor :
563
- return self ._cov [..., 4 , 5 ]
563
+ return self .cov [..., 4 , 5 ]
564
564
565
565
def clone (self ) -> "ParameterBeam" :
566
566
return ParameterBeam (
567
- mu = self ._mu .clone (),
568
- cov = self ._cov .clone (),
567
+ mu = self .mu .clone (),
568
+ cov = self .cov .clone (),
569
569
energy = self .energy .clone (),
570
570
total_charge = self .total_charge .clone (),
571
571
)
572
572
573
573
def __repr__ (self ) -> str :
574
574
return (
575
- f"{ self .__class__ .__name__ } (mu={ repr (self ._mu )} , "
576
- + f"cov={ repr (self ._cov )} , "
575
+ f"{ self .__class__ .__name__ } (mu={ repr (self .mu )} , "
576
+ + f"cov={ repr (self .cov )} , "
577
577
+ f"energy={ repr (self .energy )} , "
578
578
+ f"total_charge={ repr (self .total_charge )} , "
579
579
+ f"species={ repr (self .species )} )"
0 commit comments