forked from mhssamadani/Autolykos2_AMD_Miner
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MiningKernel.cl
executable file
·417 lines (339 loc) · 13.6 KB
/
MiningKernel.cl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
#pragma OPENCL EXTENSION cl_amd_printf : enable
#include "OCLdecs.h"////problem with relative path
#define reverseBytesInt(input,output) \
do \
{ \
void * p = &input; \
uchar4 bytesr = ((uchar4 *)p)[0].wzyx; \
output = *((cl_uint *)&bytesr); \
} \
while (0)
const __constant cl_ulong ivals[8] = {
0x6A09E667F2BDC928, 0xBB67AE8584CAA73B, 0x3C6EF372FE94F82B,
0xA54FF53A5F1D36F1, 0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179 };
__kernel void BlockMiningStep1(global const cl_uint *data, const cl_ulong base,
const cl_uint n_len,
// precalculated hashes
global const cl_uint* hashes,
// intermediate Hashes
global cl_uint *BHashes) {
cl_uint tid;
cl_uint r[9] = { 0 };
cl_ulong aux[32];
cl_uint j;
cl_uint non[NONCE_SIZE_32];
cl_ulong tmp;
cl_ulong hsh;
cl_ulong h2;
cl_uint h3;
#pragma unroll
for (int ii = 0; ii < 4; ii++)
{
tid = (NONCES_PER_ITER / 4) * ii + get_global_id(0);
if (tid < NONCES_PER_ITER)
{
cl_uint CV;
fn_Add(((cl_uint *)&base)[0], tid, 0, non[0], CV);
non[1] = 0;
fn_Add(((cl_uint *)&base)[1], 0, CV, non[1], CV);
cl_ulong tmp;
reverseBytesInt(non[1], ((cl_uint *)(&tmp))[0]);
reverseBytesInt(non[0], ((cl_uint *)(&tmp))[1]);
//--------------------------hash
B2B_IV(aux);
B2B_IV(aux + 8);
aux[0] = ivals[0];
((cl_ulong *)(aux))[12] ^= 40;
((cl_ulong *)(aux))[13] ^= 0;
((cl_ulong *)(aux))[14] = ~((cl_ulong *)(aux))[14];
((cl_ulong *)(aux))[16] = ((global cl_ulong *)data)[0];
((cl_ulong *)(aux))[17] = ((global cl_ulong *)data)[1];
((cl_ulong *)(aux))[18] = ((global cl_ulong *)data)[2];
((cl_ulong *)(aux))[19] = ((global cl_ulong *)data)[3];
((cl_ulong *)(aux))[20] = tmp;
((cl_ulong *)(aux))[21] = 0;
((cl_ulong *)(aux))[22] = 0;
((cl_ulong *)(aux))[23] = 0;
((cl_ulong *)(aux))[24] = 0;
((cl_ulong *)(aux))[25] = 0;
((cl_ulong *)(aux))[26] = 0;
((cl_ulong *)(aux))[27] = 0;
((cl_ulong *)(aux))[28] = 0;
((cl_ulong *)(aux))[29] = 0;
((cl_ulong *)(aux))[30] = 0;
((cl_ulong *)(aux))[31] = 0;
B2B_MIX(aux, aux + 16);
cl_ulong hsh;
//#pragma unroll
// for (j = 0; j < NUM_SIZE_32; j += 2)
// {
// j = 6;
//3 = 6 >> 1;
hsh = ivals[3];
hsh ^= ((cl_ulong *)(aux))[3] ^ ((cl_ulong *)(aux))[11];
// r[6] = ((cl_uint*)(&hsh))[0];
// r[7] = ((cl_uint*)(&hsh))[1];
// }
reverseBytesInt(((cl_uint*)(&hsh))[1], ((cl_uint *)(&h2))[0]);
reverseBytesInt(((cl_uint*)(&hsh))[0], ((cl_uint *)(&h2))[1]);
//----------------------------------------------------------------------------------------
//((uint8_t*)&h2)[0] = ((uint8_t*)r)[31];
//((uint8_t*)&h2)[1] = ((uint8_t*)r)[30];
//((uint8_t*)&h2)[2] = ((uint8_t*)r)[29];
//((uint8_t*)&h2)[3] = ((uint8_t*)r)[28];
//((uint8_t*)&h2)[4] = ((uint8_t*)r)[27];
//((uint8_t*)&h2)[5] = ((uint8_t*)r)[26];
//((uint8_t*)&h2)[6] = ((uint8_t*)r)[25];
//((uint8_t*)&h2)[7] = ((uint8_t*)r)[24];
h3 = h2 % n_len;
//--------------------------read hash from lookup
cl_uint tmpL;
#pragma unroll 8
for (int i = 0; i < 32; ++i)
{
//tmpL = hashes[(h3 << 3) + i];
//reverseBytesInt(tmpL, r[7 - i]);
((uint8_t *)r)[31-i] = ((global uint8_t *)hashes)[h3 * 32 + i];
}
//------------------------------------------------------
//--------------------------hash
B2B_IV(aux);
B2B_IV(aux + 8);
aux[0] = ivals[0];
((cl_ulong *)(aux))[12] ^= 71;//31+32+8;
((cl_ulong *)(aux))[13] ^= 0;
((cl_ulong *)(aux))[14] = ~((cl_ulong *)(aux))[14];
uint8_t bT[72];
#pragma unroll
for (j = 0; j < 31; ++j)
bT[j] = ((uint8_t *)r)[j + 1];
#pragma unroll
for (j = 31; j < 63; ++j)
bT[j] = ((global uint8_t *)data)[j - 31];
#pragma unroll
for (j = 63; j < 71; ++j)
bT[j] = ((uint8_t *)&tmp)[j - 63];
bT[71] = 0;
((cl_ulong *)(aux))[16] = ((cl_ulong *)bT)[0];
((cl_ulong *)(aux))[17] = ((cl_ulong *)bT)[1];
((cl_ulong *)(aux))[18] = ((cl_ulong *)bT)[2];
((cl_ulong *)(aux))[19] = ((cl_ulong *)bT)[3];
((cl_ulong *)(aux))[20] = ((cl_ulong *)bT)[4];
((cl_ulong *)(aux))[21] = ((cl_ulong *)bT)[5];
((cl_ulong *)(aux))[22] = ((cl_ulong *)bT)[6];
((cl_ulong *)(aux))[23] = ((cl_ulong *)bT)[7];
((cl_ulong *)(aux))[24] = ((cl_ulong *)bT)[8];
((cl_ulong *)(aux))[25] = 0;
((cl_ulong *)(aux))[26] = 0;
((cl_ulong *)(aux))[27] = 0;
((cl_ulong *)(aux))[28] = 0;
((cl_ulong *)(aux))[29] = 0;
((cl_ulong *)(aux))[30] = 0;
((cl_ulong *)(aux))[31] = 0;
B2B_MIX(aux, aux + 16);
#pragma unroll
for (j = 0; j < NUM_SIZE_32; j += 2)
{
hsh = ivals[j >> 1];
hsh ^= ((cl_ulong *)(aux))[j >> 1] ^ ((cl_ulong *)(aux))[8 + (j >> 1)];
reverseBytesInt(((cl_uint*)(&hsh))[0], r[j]);
BHashes[THREADS_PER_ITER*j + tid] = r[j];
reverseBytesInt(((cl_uint*)(&hsh))[1], r[j + 1]);
BHashes[THREADS_PER_ITER*(j + 1) + tid] = r[j + 1];
}
} // if
} // for
}
__kernel void BlockMiningStep2(
const cl_uint N_MASK,
// boundary for puzzle
global const cl_uint* bound,
// data: mes
global const cl_uint* data,
// nonce base
const cl_ulong base,
// block height
const cl_uint height,
// precalculated hashes
global const cl_uint* hashes,
// indices of valid solutions
global cl_uint* valid,
// solution count
global cl_uint* vCount,
// intermediate Hashes
global cl_uint *BHashes
)
{
cl_uint const tid = get_global_id(0);
cl_uint const threadIdx = get_local_id(0);
cl_uint const thread_id = threadIdx & 7;
cl_uint const thrdblck_id = threadIdx;
cl_uint const hash_id = threadIdx >> 3;
cl_ulong aux[32] = { 0 };
cl_uint ind[32] = { 0 };
cl_uint r[9] = { 0 };
uint4 v1 = { 0,0,0,0 };
uint4 v2 = { 0,0,0,0 };
uint4 v3 = { 0,0,0,0 };
uint4 v4 = { 0,0,0,0 };
__local cl_uint shared_index[64];
__local cl_uint shared_data[512];
uint8_t j = 0;
if (tid < NONCES_PER_ITER)
{
#pragma unroll
for (int k = 0; k < 8; k++)
{
r[k] = (BHashes[k*THREADS_PER_ITER + tid]);
}
//================================================================//
// Generate indices
//================================================================//
((uint8_t *)r)[32] = ((uint8_t *)r)[0];
((uint8_t *)r)[33] = ((uint8_t *)r)[1];
((uint8_t *)r)[34] = ((uint8_t *)r)[2];
((uint8_t *)r)[35] = ((uint8_t *)r)[3];
#pragma unroll
for (int k = 0; k < K_LEN; k += 4)
{
ind[k] = r[k >> 2] % N_MASK;
ind[k + 1] = ((r[k >> 2] << 8) | (r[(k >> 2) + 1] >> 24)) % N_MASK;
ind[k + 2] = ((r[k >> 2] << 16) | (r[(k >> 2) + 1] >> 16)) % N_MASK;
ind[k + 3] = ((r[k >> 2] << 24) | (r[(k >> 2) + 1] >> 8)) % N_MASK;
}
//================================================================//
// Calculate result
//================================================================//
shared_index[thrdblck_id] = ind[0];
barrier(CLK_LOCAL_MEM_FENCE);
shared_data[(hash_id << 3) + thread_id] = (hashes[(shared_index[hash_id] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 64] = (hashes[(shared_index[hash_id + 8] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 128] = (hashes[(shared_index[hash_id + 16] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 192] = (hashes[(shared_index[hash_id + 24] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 256] = (hashes[(shared_index[hash_id + 32] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 320] = (hashes[(shared_index[hash_id + 40] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 384] = (hashes[(shared_index[hash_id + 48] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 448] = (hashes[(shared_index[hash_id + 56] << 3) + thread_id]);
barrier(CLK_LOCAL_MEM_FENCE);
v1.x = shared_data[(thrdblck_id << 3) + 0];
v1.y = shared_data[(thrdblck_id << 3) + 1];
v1.z = shared_data[(thrdblck_id << 3) + 2];
v1.w = shared_data[(thrdblck_id << 3) + 3];
v3.x = shared_data[(thrdblck_id << 3) + 4];
v3.y = shared_data[(thrdblck_id << 3) + 5];
v3.z = shared_data[(thrdblck_id << 3) + 6];
v3.w = shared_data[(thrdblck_id << 3) + 7];
shared_index[thrdblck_id] = ind[1];
barrier(CLK_LOCAL_MEM_FENCE);
shared_data[(hash_id << 3) + thread_id] = (hashes[(shared_index[hash_id] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 64] = (hashes[(shared_index[hash_id + 8] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 128] = (hashes[(shared_index[hash_id + 16] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 192] = (hashes[(shared_index[hash_id + 24] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 256] = (hashes[(shared_index[hash_id + 32] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 320] = (hashes[(shared_index[hash_id + 40] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 384] = (hashes[(shared_index[hash_id + 48] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 448] = (hashes[(shared_index[hash_id + 56] << 3) + thread_id]);
barrier(CLK_LOCAL_MEM_FENCE);
v2.x = shared_data[(thrdblck_id << 3) + 0];
v2.y = shared_data[(thrdblck_id << 3) + 1];
v2.z = shared_data[(thrdblck_id << 3) + 2];
v2.w = shared_data[(thrdblck_id << 3) + 3];
v4.x = shared_data[(thrdblck_id << 3) + 4];
v4.y = shared_data[(thrdblck_id << 3) + 5];
v4.z = shared_data[(thrdblck_id << 3) + 6];
v4.w = shared_data[(thrdblck_id << 3) + 7];
cl_uint CV = 0;
fn_Add(v1.x, v2.x, 0, r[0], CV);
fn_Add(v1.y, v2.y, CV, r[1], CV);
fn_Add(v1.z, v2.z, CV, r[2], CV);
fn_Add(v1.w, v2.w, CV, r[3], CV);
fn_Add(v3.x, v4.x, CV, r[4], CV);
fn_Add(v3.y, v4.y, CV, r[5], CV);
fn_Add(v3.z, v4.z, CV, r[6], CV);
fn_Add(v3.w, v4.w, CV, r[7], CV);
r[8] = 0; fn_Add(r[8], 0, CV, r[8], CV);
// remaining additions
#pragma unroll
for (int k = 2; k < K_LEN; ++k)
{
shared_index[thrdblck_id] = ind[k];
barrier(CLK_LOCAL_MEM_FENCE);
shared_data[(hash_id << 3) + thread_id] = (hashes[(shared_index[hash_id] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 64] = (hashes[(shared_index[hash_id + 8] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 128] = (hashes[(shared_index[hash_id + 16] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 192] = (hashes[(shared_index[hash_id + 24] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 256] = (hashes[(shared_index[hash_id + 32] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 320] = (hashes[(shared_index[hash_id + 40] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 384] = (hashes[(shared_index[hash_id + 48] << 3) + thread_id]);
shared_data[(hash_id << 3) + thread_id + 448] = (hashes[(shared_index[hash_id + 56] << 3) + thread_id]);
barrier(CLK_LOCAL_MEM_FENCE);
v1.x = shared_data[(thrdblck_id << 3) + 0];
v1.y = shared_data[(thrdblck_id << 3) + 1];
v1.z = shared_data[(thrdblck_id << 3) + 2];
v1.w = shared_data[(thrdblck_id << 3) + 3];
v2.x = shared_data[(thrdblck_id << 3) + 4];
v2.y = shared_data[(thrdblck_id << 3) + 5];
v2.z = shared_data[(thrdblck_id << 3) + 6];
v2.w = shared_data[(thrdblck_id << 3) + 7];
fn_Add(r[0], v1.x, CV, r[0], CV);
fn_Add(r[1], v1.y, CV, r[1], CV);
fn_Add(r[2], v1.z, CV, r[2], CV);
fn_Add(r[3], v1.w, CV, r[3], CV);
fn_Add(r[4], v2.x, CV, r[4], CV);
fn_Add(r[5], v2.y, CV, r[5], CV);
fn_Add(r[6], v2.z, CV, r[6], CV);
fn_Add(r[7], v2.w, CV, r[7], CV);
fn_Add(r[8], 0, CV, r[8], CV);
}
//--------------------hash(f)--------------------
//====================================================================//
// Initialize context
//====================================================================//
B2B_IV(aux);
B2B_IV(aux + 8);
aux[0] = ivals[0];
((cl_ulong *)(aux))[12] ^= 32;
((cl_ulong *)(aux))[13] ^= 0;
((cl_ulong *)(aux))[14] = ~((cl_ulong *)(aux))[14];
uint8_t *bb = (uint8_t *)(&(((cl_ulong *)(aux))[16]));
for (j = 0; j < NUM_SIZE_8; ++j)
{
bb[j] = ((const uint8_t *)r)[NUM_SIZE_8 - j - 1];
}
((cl_ulong *)(aux))[20] = 0;
((cl_ulong *)(aux))[21] = 0;
((cl_ulong *)(aux))[22] = 0;
((cl_ulong *)(aux))[23] = 0;
((cl_ulong *)(aux))[24] = 0;
((cl_ulong *)(aux))[25] = 0;
((cl_ulong *)(aux))[26] = 0;
((cl_ulong *)(aux))[27] = 0;
((cl_ulong *)(aux))[28] = 0;
((cl_ulong *)(aux))[29] = 0;
((cl_ulong *)(aux))[30] = 0;
((cl_ulong *)(aux))[31] = 0;
B2B_MIX(aux, aux + 16);
cl_ulong hsh;
#pragma unroll
for (j = 0; j < NUM_SIZE_32; j += 2)
{
hsh = ivals[j >> 1];
hsh ^= ((cl_ulong *)(aux))[j >> 1] ^ ((cl_ulong *)(aux))[8 + (j >> 1)];
reverseBytesInt(((cl_uint*)&hsh)[0], r[7 - j]);
reverseBytesInt(((cl_uint*)&hsh)[1], r[7 - j - 1]);
}
//================================================================//
// Dump result to global memory -- LITTLE ENDIAN
//================================================================//
j = ((cl_ulong*)r)[3] < ((cl_ulong global*)bound)[3] || ((cl_ulong*)r)[3] == ((cl_ulong global*)bound)[3] && (((cl_ulong*)r)[2] < ((cl_ulong global*)bound)[2] || ((cl_ulong*)r)[2] == ((cl_ulong global*)bound)[2] && (((cl_ulong*)r)[1] < ((cl_ulong global*)bound)[1] || ((cl_ulong*)r)[1] == ((cl_ulong global*)bound)[1] && ((cl_ulong*)r)[0] < ((cl_ulong global*)bound)[0]));
if (j )//
{
cl_uint oldC = atomic_inc(vCount);
if (oldC < MAX_POOL_RES)
{
valid[oldC] = tid + 1;
}
}
} // if
}