-
Notifications
You must be signed in to change notification settings - Fork 764
/
Copy pathagent.py
405 lines (316 loc) · 15.4 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from __future__ import print_function
import os
import time
import random
import numpy as np
from tqdm import tqdm
import tensorflow as tf
from .base import BaseModel
from .history import History
from .replay_memory import ReplayMemory
from .ops import linear, conv2d, clipped_error
from .utils import get_time, save_pkl, load_pkl
class Agent(BaseModel):
def __init__(self, config, environment, sess):
super(Agent, self).__init__(config)
self.sess = sess
self.weight_dir = 'weights'
self.env = environment
self.history = History(self.config)
self.memory = ReplayMemory(self.config, self.model_dir)
with tf.variable_scope('step'):
self.step_op = tf.Variable(0, trainable=False, name='step')
self.step_input = tf.placeholder('int32', None, name='step_input')
self.step_assign_op = self.step_op.assign(self.step_input)
self.build_dqn()
def train(self):
start_step = self.step_op.eval()
start_time = time.time()
num_game, self.update_count, ep_reward = 0, 0, 0.
total_reward, self.total_loss, self.total_q = 0., 0., 0.
max_avg_ep_reward = 0
ep_rewards, actions = [], []
screen, reward, action, terminal = self.env.new_random_game()
for _ in range(self.history_length):
self.history.add(screen)
for self.step in tqdm(range(start_step, self.max_step), ncols=70, initial=start_step):
if self.step == self.learn_start:
num_game, self.update_count, ep_reward = 0, 0, 0.
total_reward, self.total_loss, self.total_q = 0., 0., 0.
ep_rewards, actions = [], []
# 1. predict
action = self.predict(self.history.get())
# 2. act
screen, reward, terminal = self.env.act(action, is_training=True)
# 3. observe
self.observe(screen, reward, action, terminal)
if terminal:
screen, reward, action, terminal = self.env.new_random_game()
num_game += 1
ep_rewards.append(ep_reward)
ep_reward = 0.
else:
ep_reward += reward
actions.append(action)
total_reward += reward
if self.step >= self.learn_start:
if self.step % self.test_step == self.test_step - 1:
avg_reward = total_reward / self.test_step
avg_loss = self.total_loss / self.update_count
avg_q = self.total_q / self.update_count
try:
max_ep_reward = np.max(ep_rewards)
min_ep_reward = np.min(ep_rewards)
avg_ep_reward = np.mean(ep_rewards)
except:
max_ep_reward, min_ep_reward, avg_ep_reward = 0, 0, 0
print('\navg_r: %.4f, avg_l: %.6f, avg_q: %3.6f, avg_ep_r: %.4f, max_ep_r: %.4f, min_ep_r: %.4f, # game: %d' \
% (avg_reward, avg_loss, avg_q, avg_ep_reward, max_ep_reward, min_ep_reward, num_game))
if max_avg_ep_reward * 0.9 <= avg_ep_reward:
self.step_assign_op.eval({self.step_input: self.step + 1})
self.save_model(self.step + 1)
max_avg_ep_reward = max(max_avg_ep_reward, avg_ep_reward)
if self.step > 180:
self.inject_summary({
'average.reward': avg_reward,
'average.loss': avg_loss,
'average.q': avg_q,
'episode.max reward': max_ep_reward,
'episode.min reward': min_ep_reward,
'episode.avg reward': avg_ep_reward,
'episode.num of game': num_game,
'episode.rewards': ep_rewards,
'episode.actions': actions,
'training.learning_rate': self.learning_rate_op.eval({self.learning_rate_step: self.step}),
}, self.step)
num_game = 0
total_reward = 0.
self.total_loss = 0.
self.total_q = 0.
self.update_count = 0
ep_reward = 0.
ep_rewards = []
actions = []
def predict(self, s_t, test_ep=None):
ep = test_ep or (self.ep_end +
max(0., (self.ep_start - self.ep_end)
* (self.ep_end_t - max(0., self.step - self.learn_start)) / self.ep_end_t))
if random.random() < ep:
action = random.randrange(self.env.action_size)
else:
action = self.q_action.eval({self.s_t: [s_t]})[0]
return action
def observe(self, screen, reward, action, terminal):
reward = max(self.min_reward, min(self.max_reward, reward))
self.history.add(screen)
self.memory.add(screen, reward, action, terminal)
if self.step > self.learn_start:
if self.step % self.train_frequency == 0:
self.q_learning_mini_batch()
if self.step % self.target_q_update_step == self.target_q_update_step - 1:
self.update_target_q_network()
def q_learning_mini_batch(self):
if self.memory.count < self.history_length:
return
else:
s_t, action, reward, s_t_plus_1, terminal = self.memory.sample()
t = time.time()
if self.double_q:
# Double Q-learning
pred_action = self.q_action.eval({self.s_t: s_t_plus_1})
q_t_plus_1_with_pred_action = self.target_q_with_idx.eval({
self.target_s_t: s_t_plus_1,
self.target_q_idx: [[idx, pred_a] for idx, pred_a in enumerate(pred_action)]
})
target_q_t = (1. - terminal) * self.discount * q_t_plus_1_with_pred_action + reward
else:
q_t_plus_1 = self.target_q.eval({self.target_s_t: s_t_plus_1})
terminal = np.array(terminal) + 0.
max_q_t_plus_1 = np.max(q_t_plus_1, axis=1)
target_q_t = (1. - terminal) * self.discount * max_q_t_plus_1 + reward
_, q_t, loss, summary_str = self.sess.run([self.optim, self.q, self.loss, self.q_summary], {
self.target_q_t: target_q_t,
self.action: action,
self.s_t: s_t,
self.learning_rate_step: self.step,
})
self.writer.add_summary(summary_str, self.step)
self.total_loss += loss
self.total_q += q_t.mean()
self.update_count += 1
def build_dqn(self):
self.w = {}
self.t_w = {}
#initializer = tf.contrib.layers.xavier_initializer()
initializer = tf.truncated_normal_initializer(0, 0.02)
activation_fn = tf.nn.relu
# training network
with tf.variable_scope('prediction'):
if self.cnn_format == 'NHWC':
self.s_t = tf.placeholder('float32',
[None, self.screen_height, self.screen_width, self.history_length], name='s_t')
else:
self.s_t = tf.placeholder('float32',
[None, self.history_length, self.screen_height, self.screen_width], name='s_t')
self.l1, self.w['l1_w'], self.w['l1_b'] = conv2d(self.s_t,
32, [8, 8], [4, 4], initializer, activation_fn, self.cnn_format, name='l1')
self.l2, self.w['l2_w'], self.w['l2_b'] = conv2d(self.l1,
64, [4, 4], [2, 2], initializer, activation_fn, self.cnn_format, name='l2')
self.l3, self.w['l3_w'], self.w['l3_b'] = conv2d(self.l2,
64, [3, 3], [1, 1], initializer, activation_fn, self.cnn_format, name='l3')
shape = self.l3.get_shape().as_list()
self.l3_flat = tf.reshape(self.l3, [-1, reduce(lambda x, y: x * y, shape[1:])])
if self.dueling:
self.value_hid, self.w['l4_val_w'], self.w['l4_val_b'] = \
linear(self.l3_flat, 512, activation_fn=activation_fn, name='value_hid')
self.adv_hid, self.w['l4_adv_w'], self.w['l4_adv_b'] = \
linear(self.l3_flat, 512, activation_fn=activation_fn, name='adv_hid')
self.value, self.w['val_w_out'], self.w['val_w_b'] = \
linear(self.value_hid, 1, name='value_out')
self.advantage, self.w['adv_w_out'], self.w['adv_w_b'] = \
linear(self.adv_hid, self.env.action_size, name='adv_out')
# Average Dueling
self.q = self.value + (self.advantage -
tf.reduce_mean(self.advantage, reduction_indices=1, keep_dims=True))
else:
self.l4, self.w['l4_w'], self.w['l4_b'] = linear(self.l3_flat, 512, activation_fn=activation_fn, name='l4')
self.q, self.w['q_w'], self.w['q_b'] = linear(self.l4, self.env.action_size, name='q')
self.q_action = tf.argmax(self.q, dimension=1)
q_summary = []
avg_q = tf.reduce_mean(self.q, 0)
for idx in xrange(self.env.action_size):
q_summary.append(tf.summary.histogram('q/%s' % idx, avg_q[idx]))
self.q_summary = tf.summary.merge(q_summary, 'q_summary')
# target network
with tf.variable_scope('target'):
if self.cnn_format == 'NHWC':
self.target_s_t = tf.placeholder('float32',
[None, self.screen_height, self.screen_width, self.history_length], name='target_s_t')
else:
self.target_s_t = tf.placeholder('float32',
[None, self.history_length, self.screen_height, self.screen_width], name='target_s_t')
self.target_l1, self.t_w['l1_w'], self.t_w['l1_b'] = conv2d(self.target_s_t,
32, [8, 8], [4, 4], initializer, activation_fn, self.cnn_format, name='target_l1')
self.target_l2, self.t_w['l2_w'], self.t_w['l2_b'] = conv2d(self.target_l1,
64, [4, 4], [2, 2], initializer, activation_fn, self.cnn_format, name='target_l2')
self.target_l3, self.t_w['l3_w'], self.t_w['l3_b'] = conv2d(self.target_l2,
64, [3, 3], [1, 1], initializer, activation_fn, self.cnn_format, name='target_l3')
shape = self.target_l3.get_shape().as_list()
self.target_l3_flat = tf.reshape(self.target_l3, [-1, reduce(lambda x, y: x * y, shape[1:])])
if self.dueling:
self.t_value_hid, self.t_w['l4_val_w'], self.t_w['l4_val_b'] = \
linear(self.target_l3_flat, 512, activation_fn=activation_fn, name='target_value_hid')
self.t_adv_hid, self.t_w['l4_adv_w'], self.t_w['l4_adv_b'] = \
linear(self.target_l3_flat, 512, activation_fn=activation_fn, name='target_adv_hid')
self.t_value, self.t_w['val_w_out'], self.t_w['val_w_b'] = \
linear(self.t_value_hid, 1, name='target_value_out')
self.t_advantage, self.t_w['adv_w_out'], self.t_w['adv_w_b'] = \
linear(self.t_adv_hid, self.env.action_size, name='target_adv_out')
# Average Dueling
self.target_q = self.t_value + (self.t_advantage -
tf.reduce_mean(self.t_advantage, reduction_indices=1, keep_dims=True))
else:
self.target_l4, self.t_w['l4_w'], self.t_w['l4_b'] = \
linear(self.target_l3_flat, 512, activation_fn=activation_fn, name='target_l4')
self.target_q, self.t_w['q_w'], self.t_w['q_b'] = \
linear(self.target_l4, self.env.action_size, name='target_q')
self.target_q_idx = tf.placeholder('int32', [None, None], 'outputs_idx')
self.target_q_with_idx = tf.gather_nd(self.target_q, self.target_q_idx)
with tf.variable_scope('pred_to_target'):
self.t_w_input = {}
self.t_w_assign_op = {}
for name in self.w.keys():
self.t_w_input[name] = tf.placeholder('float32', self.t_w[name].get_shape().as_list(), name=name)
self.t_w_assign_op[name] = self.t_w[name].assign(self.t_w_input[name])
# optimizer
with tf.variable_scope('optimizer'):
self.target_q_t = tf.placeholder('float32', [None], name='target_q_t')
self.action = tf.placeholder('int64', [None], name='action')
action_one_hot = tf.one_hot(self.action, self.env.action_size, 1.0, 0.0, name='action_one_hot')
q_acted = tf.reduce_sum(self.q * action_one_hot, reduction_indices=1, name='q_acted')
self.delta = self.target_q_t - q_acted
self.global_step = tf.Variable(0, trainable=False)
self.loss = tf.reduce_mean(clipped_error(self.delta), name='loss')
self.learning_rate_step = tf.placeholder('int64', None, name='learning_rate_step')
self.learning_rate_op = tf.maximum(self.learning_rate_minimum,
tf.train.exponential_decay(
self.learning_rate,
self.learning_rate_step,
self.learning_rate_decay_step,
self.learning_rate_decay,
staircase=True))
self.optim = tf.train.RMSPropOptimizer(
self.learning_rate_op, momentum=0.95, epsilon=0.01).minimize(self.loss)
with tf.variable_scope('summary'):
scalar_summary_tags = ['average.reward', 'average.loss', 'average.q', \
'episode.max reward', 'episode.min reward', 'episode.avg reward', 'episode.num of game', 'training.learning_rate']
self.summary_placeholders = {}
self.summary_ops = {}
for tag in scalar_summary_tags:
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_'))
self.summary_ops[tag] = tf.summary.scalar("%s-%s/%s" % (self.env_name, self.env_type, tag), self.summary_placeholders[tag])
histogram_summary_tags = ['episode.rewards', 'episode.actions']
for tag in histogram_summary_tags:
self.summary_placeholders[tag] = tf.placeholder('float32', None, name=tag.replace(' ', '_'))
self.summary_ops[tag] = tf.summary.histogram(tag, self.summary_placeholders[tag])
self.writer = tf.summary.FileWriter('./logs/%s' % self.model_dir, self.sess.graph)
tf.initialize_all_variables().run()
self._saver = tf.train.Saver(self.w.values() + [self.step_op], max_to_keep=30)
self.load_model()
self.update_target_q_network()
def update_target_q_network(self):
for name in self.w.keys():
self.t_w_assign_op[name].eval({self.t_w_input[name]: self.w[name].eval()})
def save_weight_to_pkl(self):
if not os.path.exists(self.weight_dir):
os.makedirs(self.weight_dir)
for name in self.w.keys():
save_pkl(self.w[name].eval(), os.path.join(self.weight_dir, "%s.pkl" % name))
def load_weight_from_pkl(self, cpu_mode=False):
with tf.variable_scope('load_pred_from_pkl'):
self.w_input = {}
self.w_assign_op = {}
for name in self.w.keys():
self.w_input[name] = tf.placeholder('float32', self.w[name].get_shape().as_list(), name=name)
self.w_assign_op[name] = self.w[name].assign(self.w_input[name])
for name in self.w.keys():
self.w_assign_op[name].eval({self.w_input[name]: load_pkl(os.path.join(self.weight_dir, "%s.pkl" % name))})
self.update_target_q_network()
def inject_summary(self, tag_dict, step):
summary_str_lists = self.sess.run([self.summary_ops[tag] for tag in tag_dict.keys()], {
self.summary_placeholders[tag]: value for tag, value in tag_dict.items()
})
for summary_str in summary_str_lists:
self.writer.add_summary(summary_str, self.step)
def play(self, n_step=10000, n_episode=100, test_ep=None, render=False):
if test_ep == None:
test_ep = self.ep_end
test_history = History(self.config)
if not self.display:
gym_dir = '/tmp/%s-%s' % (self.env_name, get_time())
self.env.env.monitor.start(gym_dir)
best_reward, best_idx = 0, 0
for idx in xrange(n_episode):
screen, reward, action, terminal = self.env.new_random_game()
current_reward = 0
for _ in range(self.history_length):
test_history.add(screen)
for t in tqdm(range(n_step), ncols=70):
# 1. predict
action = self.predict(test_history.get(), test_ep)
# 2. act
screen, reward, terminal = self.env.act(action, is_training=False)
# 3. observe
test_history.add(screen)
current_reward += reward
if terminal:
break
if current_reward > best_reward:
best_reward = current_reward
best_idx = idx
print("="*30)
print(" [%d] Best reward : %d" % (best_idx, best_reward))
print("="*30)
if not self.display:
self.env.env.monitor.close()
#gym.upload(gym_dir, writeup='https://github.com/devsisters/DQN-tensorflow', api_key='')