-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTabulation.agda
272 lines (220 loc) · 10.7 KB
/
Tabulation.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
module Tabulation where
open import Data.Bool hiding (_≟_)
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Data.Maybe hiding (map ; All)
open import Data.List
open import Data.Empty
open import Relation.Binary.PropositionalEquality
hiding (inspect)
open import Relation.Binary.Core
open import Relation.Nullary
open import Utilities.BoolProperties
open import Utilities.ListProperties hiding (end)
open import Utilities.ListsAddition
open import Utilities.Logic
open import FiniteSubset hiding (fromList)
open import Finiteness
fromListPartial : {X Y : Set} → DecEq X
→ (xys : List (X × Y)) → NoDup (map proj₁ xys)
→ X → Maybe Y
fromListPartial eq xys nodup x with eq2in eq x (map proj₁ xys)
fromListPartial eq xys nodup x | yes x₁ with map∃ eq x proj₁ xys x₁
... | o1 , o2 , o3 = just (proj₂ o1)
fromListPartial eq xys nodup x | no y = nothing
fromListPartialSound : {X Y : Set} → (d : DecEq X)
→ (xs : List (X × Y)) → (nodup : NoDup (map proj₁ xs))
→ ∀ x y → (x , y) ∈ xs
→ fromListPartial d xs nodup x ≡ just y
fromListPartialSound d xs nd x y xyin with eq2in d x (map proj₁ xs)
fromListPartialSound d xs nd x y xyin | yes x₁ with map∃ d x proj₁ xs x₁
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl with nd x x₁
... | q1 , q2 , q3 , q4 , q5 with ∃-after-map (x , y') xs proj₂ z2
| ∃-after-map (x , y) xs proj₂ xyin
... | b | v with ∃-split (x , y) xs xyin
... | o1 , o2 , o3 rewrite o3 with ∈-split {_} {o1} {((x , y) ∷ o2)} z2
... | inj₁ k with notNoDup {_} {d}
(map (λ r → proj₁ r) (o1 ++ (x , y) ∷ o2))
(map proj₁ o1 , map proj₁ ((x , y) ∷ o2) , x ,
maphom o1 ((x , y) ∷ o2) proj₁ ,
∃-after-map (x , y') o1 proj₁ k , here) nd
... | ()
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , .y) , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ here = refl
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k)
rewrite ++-assoc o1 ((x , y) ∷ []) o2 with ∈-split {_} {(o1 ++ (x , y) ∷ [])} {o2} z2
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k) | inj₁ xyin1
with ∈-split {_} {o1} {(x , y) ∷ []} xyin1
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k) | inj₁ xyin1
| inj₁ o with notNoDup {_} {d} (map (λ r → proj₁ r) ((o1 ++ (x , y) ∷ []) ++ o2))
(map proj₁ (o1 ++ (x , y) ∷ []) ,
map proj₁ o2 , x , maphom (o1 ++ (x , y) ∷ []) o2 proj₁ ,
∈-eq-cong x (map proj₁ o1 ++ x ∷ []) (map (λ r → proj₁ r) (o1 ++ (x , y) ∷ []))
(∈-weak-lft {_} {map proj₁ o1} {x ∷ []} {x} here)
(sym (maphom o1 ((x , y) ∷ []) proj₁)) ,
∃-after-map (x , y') o2 proj₁ k ) nd
... | ()
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , .y) , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k)
| inj₁ xyin1 | inj₂ here = refl
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3
| inj₂ (there k) | inj₁ xyin1 | inj₂ (there ())
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k)
| inj₂ xyin1 with ∃-after-map (x , y') o2 proj₁ xyin1
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v | o1 , o2 , o3 | inj₂ (there k)
| inj₂ xyin1 | inp with notNoDup {_} {d}
(map (λ r → proj₁ r) ((o1 ++ (x , y) ∷ []) ++ o2))
(map proj₁ (o1 ++ (x , y) ∷ []) , map (λ r → proj₁ r) o2 , x ,
maphom (o1 ++ (x , y) ∷ []) o2 proj₁ , ∈-eq-cong x (map proj₁ o1 ++ x ∷ [])
(map (λ r → proj₁ r) (o1 ++ (x , y) ∷ []))
(∈-weak-lft {_} {map proj₁ o1} {x ∷ []} {x} here)
(sym (maphom o1 ((x , y) ∷ []) proj₁)) , inp) nd
fromListPartialSound d xs nd x y xyin | yes x₁ | (.x , y') , z2 , refl
| q1 , q2 , q3 , q4 , q5 | b | v
| o1 , o2 , o3 | inj₂ (there k) | inj₂ xyin1 | inp | ()
fromListPartialSound d xs nd x y₁ xyin | no y
with y (∃-after-map (x , y₁) xs proj₁ xyin)
... | ()
fromList : {X Y : Set} → (kf : ListableNoDup X)
→ (xs : List (X × Y))
→ (proj₁ kf) SubSetOf (map proj₁ xs)
→ NoDup (map proj₁ xs)
→ X → Y
fromList (els , elsC , nd) xs sub nodup el
with inspect (fromListPartial (lstblEq (els , elsC)) xs nodup el)
fromList (els , elsC , nd) xs sub nodup el | it (just y) z = y
fromList (els , elsC , nd) xs sub nodup el | it nothing z with sub {el} (elsC el)
fromList (els , elsC , nd) xs sub nodup el | it nothing z
| o with map∃ (lstblEq (els , elsC)) el proj₁ xs o
fromList (els , elsC , nd) xs sub nodup .el | it nothing z
| o | (el , proj₂) , mp2 , refl
rewrite fromListPartialSound (lstblEq (els , elsC))
xs nodup el proj₂ mp2 with z
... | ()
fromListSound : {X Y : Set} → (kf : ListableNoDup X)
→ (xs : List (X × Y))
→ (sb : (proj₁ kf) SubSetOf (map proj₁ xs))
→ (nd : NoDup (map proj₁ xs))
→ ∀ x y → (x , y) ∈ xs
→ fromList kf xs sb nd x ≡ y
fromListSound (els , elsComp , nd) xs sub nodup el y pin
with inspect (fromListPartial (lstblEq (els , elsComp)) xs nodup el)
fromListSound (els , elsComp , nd) xs sub nodup el y pin | it (just y') x₁
= cong (maybe (λ x → x) y') (trans (sym x₁)
(fromListPartialSound (lstblEq (els , elsComp)) xs nodup el y pin))
fromListSound (els , elsComp , nd) xs sub nodup el y pin | it nothing z
with map∃ (lstblEq (els , elsComp)) el proj₁ xs (sub {el} (elsComp el))
fromListSound (els , elsComp , nd) xs sub nodup el y pin | it nothing z
| (.el , proj₂) , p2 , refl with trans (sym z)
(fromListPartialSound (lstblEq (els , elsComp)) xs nodup el y pin)
... | ()
fromListComplete : {X Y : Set} → (kf : ListableNoDup X)
→ (xs : List (X × Y))
→ (sb : (proj₁ kf) SubSetOf (map proj₁ xs))
→ (nd : NoDup (map proj₁ xs))
→ ∀ x y → fromList kf xs sb nd x ≡ y
→ (x , y) ∈ xs
fromListComplete (els , elsC , nd') xs sb nd e y frpr with sb (elsC e)
... | o with map∃ (lstblEq (els , elsC)) e proj₁ xs o
fromListComplete (els , elsC , nd') xs sb nd e y frpr | o
| (.e , y') , pr2 , refl
rewrite trans (sym frpr)
(fromListSound (els , elsC , nd') xs sb nd e y' pr2)
= pr2
toList : {X Y : Set} → List X → (X → Y) → List (X × Y)
toList xs f = map (λ x → (x , f x)) xs
toListComplete : {X Y : Set} → (f : X → Y)
→ (xs : List X)
→ ∀ x y → x ∈ xs → f x ≡ y
→ (x , y) ∈ toList xs f
toListComplete f xs x y xin fx with ∃-split x xs xin
... | o1 , o2 , o3 rewrite o3
| maphom o1 (x ∷ o2) (λ x₁ → x₁ , f x₁)
| fx = ∈-weak-lft {_} {(map (λ x₁ → x₁ , f x₁) o1)}
{(x , y) ∷ map (λ x₁ → x₁ , f x₁) o2} here
toListSoundHelp : {X Y : Set} → (f : X → Y)
→ (xs : List X)
→ ∀ x y → (x , y) ∈ toList xs f
→ x ∈ xs
toListSoundHelp f [] x y ()
toListSoundHelp f (x ∷ xs) .x .(f x) here
= here
toListSoundHelp f (x ∷ xs) x₁ y (there xyin)
= there (toListSoundHelp f xs x₁ y xyin)
toListSound : {X Y : Set} → (f : X → Y)
→ (xs : List X) → NoDup xs
→ ∀ x y → (x , y) ∈ toList xs f
→ f x ≡ y
toListSound f xs nd x y xyin with nd x (toListSoundHelp f xs x y xyin)
... | o1 , o2 , o3 , o4 , o5 rewrite o3 | maphom o1 (x ∷ o2) (λ x₁ → x₁ , f x₁)
with ∈-split {_} {map (λ x₁ → x₁ , f x₁) o1}
{(x , f x) ∷ map (λ x₁ → x₁ , f x₁) o2} xyin
... | inj₁ z with map-cong proj₁ (x , y) (map (λ x₁ → x₁ , f x₁) o1) z
... | xin rewrite map-pr1 o1 f = ex-falso-quodlibet (o4 xin)
toListSound f xs nd x .(f x) xyin | o1 , o2 , o3 , o4 , o5
| inj₂ here = refl
toListSound f xs nd x y xyin | o1 , o2 , o3 , o4 , o5 | inj₂ (there z)
with map-cong proj₁ (x , y) (map (λ x₁ → x₁ , f x₁) o2) z
... | xin rewrite map-pr1 o2 f = ex-falso-quodlibet (o5 xin)
Tbl : Set → Set → Set
Tbl X Y = Σ[ xs ∈ List (X × Y) ]
Σ[ kf ∈ ListableNoDup X ]
All (map proj₁ xs) ×
NoDupInd (map proj₁ xs)
toTbl : {X Y : Set} → ListableNoDup X → (X → Y) → Tbl X Y
toTbl (f1 , f2 , f3) f = toList f1 f , (f1 , f2 , f3) , sub , nod
where
sub : All (map proj₁ (toList f1 f))
sub rewrite map-pr1 f1 f = f2
nod : NoDupInd (map (λ r → proj₁ r) (toList f1 f))
nod rewrite map-pr1 f1 f = f3
fromTbl : {X Y : Set} → Tbl X Y → X → Y
fromTbl (ls , f , p1 , p2) x = fromList f ls (λ x → p1 _) (NoDupInd-corr _ p2) x
allCheck : {X : Set}
→ Listable X
→ (xs : List X)
→ Dec (All xs)
allCheck lstbl xs with subset-dec (lstblEq lstbl) (proj₁ lstbl) xs
... | yes p = yes (λ x → p ((proj₂ lstbl) _))
... | no p = no (λ pp → p (λ z → pp _))
ndCheck : {X : Set}
→ Listable X
→ (xs : List X)
→ Dec (NoDupInd xs)
ndCheck lstbl = nodupDec2 (lstblEq lstbl)
createTbl : {X Y : Set} → (xs : List (X × Y))
→ (lstbl : Listable X)
→ {a : ∥ allCheck lstbl (map proj₁ xs) ∥}
→ {n : ∥ ndCheck lstbl (map proj₁ xs) ∥}
→ Tbl X Y
createTbl xs lstbl {a} {n}
= xs , lstbl2nodup lstbl , ∥-∥-yes _ {a} , ∥-∥-yes _ {n}
tofrom : {X Y : Set} → (f : ListableNoDup X) → (t : Tbl X Y)
→ (proj₁ t) SubSetOf (proj₁ (toTbl f (fromTbl t)))
tofrom (f1 , f2 , f3) (ls , f , p1 , p2) x
= toListComplete _ _ _ _ (f2 _) (fromListSound f ls (λ z → p1 _) (NoDupInd-corr _ p2) _ _ x)
fromto : {X Y : Set} → (f : ListableNoDup X) → (fn : X → Y)
→ ∀ x → fromTbl (toTbl f fn) x ≡ fn x
fromto (proj₁ , proj₂ , proj₃) fn x
with toListComplete fn proj₁ x (fn x) (proj₂ _) refl
... | o = fromListSound
(proj₁ , proj₂ , proj₃)
(map (λ x₁ → x₁ , fn x₁) proj₁) _ _
x (fn x) o
fromPure : {X Y : Set}{eq : DecEq X}{b : Bool}
→ (f : FiniteSubSet X eq b)
→ (X → Y)
→ Element f → Y
fromPure f fun (proj₁ , proj₂) = fun proj₁
_↦_ : {X Y : Set}{eq : DecEq X}
→ {b : Bool} → {f : FiniteSubSet X eq b}
→ (c : X)
→ {cp : ∥ eq2in eq c (listOf f) ∥ }
→ Y → (Element f × Y)
_↦_ c {cp = cp} y = (c , cp) , y