This repository has been archived by the owner on Oct 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvcs.c
1725 lines (1362 loc) · 33.3 KB
/
vcs.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "vcs.h"
unsigned short addr_absolute() {
/*
Absolute
Instructions using absolute addressing contain a full 16 bit address to identify the target location.
*/
return operand_2bytes() & 0x1fff;
}
unsigned short addr_absolute_x() {
/*
Absolute,X
The address to be accessed by an instruction using X register indexed absolute addressing is computed by taking the 16 bit address from the instruction and added the contents of the X register.
For example if X contains $92 then an STA $2000,X instruction will store the accumulator at $2092 (e.g. $2000 + $92).
*/
return (operand_2bytes() + index_register_x) & 0x1fff;
}
unsigned short addr_absolute_y() {
/*
Absolute,Y
The Y register indexed absolute addressing mode is the same as the previous mode only with the contents of the Y register added to the 16 bit address from the instruction.
*/
return (operand_2bytes() + index_register_y) & 0x1fff;
}
unsigned short addr_indirect() {
/*
Indirect
JMP is the only 6502 instruction to support indirection.
The instruction contains a 16 bit address which identifies the location of the least significant byte of another 16 bit memory address which is the real target of the instruction.
For example if location $0120 contains $FC and location $0121 contains $BA then the instruction JMP ($0120) will cause the next instruction execution to occur at $BAFC (e.g. the contents of $0120 and $0121).
*/
unsigned char byte1;
unsigned char byte2;
byte1 = memory[operand_2bytes()];
byte2 = memory[operand_2bytes() + 1];
return (byte1 | (byte2 << BYTE_SIZE)) & 0x1fff;
}
unsigned short addr_indirect_x() {
/*
Indexed Indirect
Indexed indirect addressing is normally used in conjunction with a table of address held on zero page.
The address of the table is taken from the instruction and the X register added to it (with zero page wrap around) to give the location of the least significant byte of the target address.
*/
unsigned char address;
unsigned char byte1;
unsigned char byte2;
fetch();
address = instruction + index_register_x;
byte1 = memory[address];
byte2 = memory[address + 1];
return (byte1 | (byte2 << BYTE_SIZE)) & 0x1fff;
}
unsigned short addr_indirect_y() {
/*
Indirect Indexed
Indirect indirect addressing is the most common indirection mode used on the 6502.
In instruction contains the zero page location of the least significant byte of 16 bit address.
The Y register is dynamically added to this value to generated the actual target address for operation.
*/
unsigned char byte1;
unsigned char byte2;
fetch();
byte1 = memory[instruction];
byte2 = memory[instruction + 1];
return ((byte1 | (byte2 << BYTE_SIZE)) + index_register_y) & 0x1fff;
}
signed char addr_relative() {
/*
Relative
Relative addressing mode is used by branch instructions (e.g. BEQ, BNE, etc.) which contain a signed 8 bit relative offset (e.g. -128 to +127) which is added to program counter if the condition is true.
As the program counter itself is incremented during instruction execution by two the effective address range for the target instruction must be with -126 to +129 bytes of the branch.
*/
fetch();
return instruction;
}
unsigned short addr_zero_page() {
/*
Zero Page
An instruction using zero page addressing mode has only an 8 bit address operand.
This limits it to addressing only the first 256 bytes of memory (e.g. $0000 to $00FF) where the most significant byte of the address is always zero.
*/
fetch();
return (0x0000 | instruction) & 0x1fff;
}
unsigned short addr_zero_page_x() {
/*
Zero Page,X
The address to be accessed by an instruction using indexed zero page addressing is calculated by taking the 8 bit zero page address from the instruction and adding the current value of the X register to it.
For example if the X register contains $0F and the instruction LDA $80,X is executed then the accumulator will be loaded from $008F (e.g. $80 + $0F => $8F).
The address calculation wraps around if the sum of the base address and the register exceed $FF.
If we repeat the last example but with $FF in the X register then the accumulator will be loaded from $007F (e.g. $80 + $FF => $7F) and not $017F.
*/
fetch();
return (instruction + index_register_x) & 0x1fff;
}
unsigned short addr_zero_page_y() {
/*
Zero Page,Y
The address to be accessed by an instruction using indexed zero page addressing is calculated by taking the 8 bit zero page address from the instruction and adding the current value of the Y register to it.
This mode can only be used with the LDX and STX instructions.
*/
fetch();
return (instruction + index_register_y) & 0x1fff;
}
void check_negative(unsigned char data) {
if (data & (1 << STATUS_BIT_NEGATIVE) > 0) {
flag_negative_set();
} else {
flag_negative_unset();
}
}
void check_overflow(unsigned short data) {
if (data > 0xff) {
flag_overflow_set();
} else {
flag_overflow_unset();
}
}
void check_zero(unsigned char data) {
if (data == 0) {
flag_zero_set();
} else {
flag_zero_unset();
}
}
void cycle() {
while(running) {
fetch();
decode();
update();
}
}
unsigned char data_absolute() {
return memory[addr_absolute()];
}
unsigned char data_absolute_x() {
return memory[addr_absolute_x()];
}
unsigned char data_absolute_y() {
return memory[addr_absolute_y()];
}
unsigned char data_immediate() {
/*
Immediate
Immediate addressing allows the programmer to directly specify an 8 bit constant within the instruction.
*/
fetch();
return instruction;
}
unsigned char data_indirect_x() {
return memory[addr_indirect_x()];
}
unsigned char data_indirect_y() {
return memory[addr_indirect_y()];
}
unsigned char data_zero_page() {
return memory[addr_zero_page()];
}
unsigned char data_zero_page_x() {
return memory[addr_zero_page_x()];
}
unsigned char data_zero_page_y() {
return memory[addr_zero_page_y()];
}
void decode() {
switch (instruction) {
case 0x00:
instruction_brk();
break;
case 0x01:
instruction_ora(data_indirect_x());
break;
case 0x05:
instruction_ora(data_zero_page());
break;
case 0x06:
instruction_asl(addr_zero_page());
break;
case 0x08:
instruction_php();
break;
case 0x09:
instruction_ora(data_immediate());
break;
case 0x0a:
instruction_asl(0);
break;
case 0x0d:
instruction_ora(data_absolute());
break;
case 0x0e:
instruction_asl(addr_absolute());
break;
case 0x10:
instruction_bpl(addr_relative());
break;
case 0x11:
instruction_ora(data_indirect_y());
break;
case 0x15:
instruction_ora(data_zero_page_x());
break;
case 0x16:
instruction_asl(addr_zero_page_x());
break;
case 0x18:
instruction_clc();
break;
case 0x19:
instruction_ora(data_absolute_y());
break;
case 0x1d:
instruction_ora(data_absolute_x());
break;
case 0x1e:
instruction_asl(addr_absolute_x());
break;
case 0x20:
instruction_jsr(addr_absolute());
break;
case 0x21:
instruction_and(data_indirect_x());
break;
case 0x24:
instruction_bit(data_zero_page());
break;
case 0x25:
instruction_and(data_zero_page());
break;
case 0x26:
instruction_rol(addr_zero_page());
break;
case 0x28:
instruction_plp();
break;
case 0x29:
instruction_and(data_immediate());
break;
case 0x2a:
instruction_rol(0);
break;
case 0x2c:
instruction_bit(data_absolute());
break;
case 0x2d:
instruction_and(data_absolute());
break;
case 0x2e:
instruction_rol(addr_absolute());
break;
case 0x30:
instruction_bmi(addr_relative());
break;
case 0x31:
instruction_and(data_indirect_y());
break;
case 0x35:
instruction_and(data_zero_page_x());
break;
case 0x36:
instruction_rol(addr_zero_page_x());
break;
case 0x38:
instruction_sec();
break;
case 0x39:
instruction_and(data_absolute_y());
break;
case 0x3d:
instruction_and(data_absolute_x());
break;
case 0x3e:
instruction_rol(addr_absolute_x());
break;
case 0x40:
instruction_rti();
break;
case 0x41:
instruction_eor(data_indirect_x());
break;
case 0x45:
instruction_eor(data_zero_page());
break;
case 0x46:
instruction_lsr(addr_zero_page());
break;
case 0x48:
instruction_pha();
break;
case 0x49:
instruction_eor(data_immediate());
break;
case 0x4a:
instruction_lsr(0);
break;
case 0x4c:
instruction_jmp(addr_absolute());
break;
case 0x4d:
instruction_eor(data_absolute());
break;
case 0x4e:
instruction_lsr(addr_absolute());
break;
case 0x50:
instruction_bvc(addr_relative());
break;
case 0x51:
instruction_eor(data_indirect_y());
break;
case 0x55:
instruction_eor(data_zero_page_x());
break;
case 0x56:
instruction_lsr(addr_zero_page_x());
break;
case 0x58:
instruction_cli();
break;
case 0x59:
instruction_eor(data_absolute_y());
break;
case 0x5d:
instruction_eor(data_absolute_x());
break;
case 0x5e:
instruction_lsr(addr_absolute_x());
break;
case 0x60:
instruction_rts();
break;
case 0x61:
instruction_adc(data_indirect_x());
break;
case 0x65:
instruction_adc(data_zero_page());
break;
case 0x66:
instruction_ror(addr_zero_page());
break;
case 0x68:
instruction_pla();
break;
case 0x69:
instruction_adc(data_immediate());
break;
case 0x6a:
instruction_ror(0);
break;
case 0x6c:
instruction_jmp(addr_indirect());
break;
case 0x6d:
instruction_adc(data_absolute());
break;
case 0x6e:
instruction_ror(addr_absolute());
break;
case 0x70:
instruction_bvs(addr_relative());
break;
case 0x71:
instruction_adc(data_indirect_y());
break;
case 0x75:
instruction_adc(data_zero_page_x());
break;
case 0x76:
instruction_ror(addr_zero_page_x());
break;
case 0x78:
instruction_sei();
break;
case 0x79:
instruction_adc(data_absolute_y());
break;
case 0x7d:
instruction_adc(data_absolute_x());
break;
case 0x7e:
instruction_ror(addr_absolute_x());
break;
case 0x81:
instruction_sta(addr_indirect_x());
break;
case 0x84:
instruction_sty(addr_zero_page());
break;
case 0x85:
instruction_sta(addr_zero_page());
break;
case 0x86:
instruction_stx(addr_zero_page());
break;
case 0x88:
instruction_dey();
break;
case 0x8a:
instruction_txa();
break;
case 0x8c:
instruction_sty(addr_absolute());
break;
case 0x8d:
instruction_sta(addr_absolute());
break;
case 0x8e:
instruction_stx(addr_absolute());
break;
case 0x90:
instruction_bcc(addr_relative());
break;
case 0x91:
instruction_sta(addr_indirect_y());
break;
case 0x94:
instruction_sty(addr_zero_page_x());
break;
case 0x95:
instruction_sta(addr_zero_page_x());
break;
case 0x96:
instruction_stx(addr_zero_page_y());
break;
case 0x98:
instruction_tya();
break;
case 0x99:
instruction_sta(addr_absolute_y());
break;
case 0x9a:
instruction_txs();
break;
case 0x9d:
instruction_sta(addr_absolute_x());
break;
case 0xa0:
instruction_bcs(data_immediate());
break;
case 0xa1:
instruction_lda(data_indirect_x());
break;
case 0xa2:
instruction_ldx(data_immediate());
break;
case 0xa4:
instruction_bcs(data_zero_page());
break;
case 0xa5:
instruction_lda(data_zero_page());
break;
case 0xa6:
instruction_ldx(data_zero_page());
break;
case 0xa8:
instruction_tay();
break;
case 0xa9:
instruction_lda(data_immediate());
break;
case 0xaa:
instruction_tax();
break;
case 0xac:
instruction_bcs(data_absolute());
break;
case 0xad:
instruction_lda(data_absolute());
break;
case 0xae:
instruction_ldx(data_absolute());
break;
case 0xb0:
instruction_bcs(addr_relative());
break;
case 0xb1:
instruction_lda(data_indirect_y());
break;
case 0xb4:
instruction_bcs(data_zero_page_x());
break;
case 0xb5:
instruction_lda(data_zero_page_x());
break;
case 0xb6:
instruction_ldx(data_zero_page_y());
break;
case 0xb8:
instruction_clv();
break;
case 0xb9:
instruction_lda(data_absolute_y());
break;
case 0xba:
instruction_tsx();
break;
case 0xbc:
instruction_bcs(data_absolute_x());
break;
case 0xbd:
instruction_lda(data_absolute_x());
break;
case 0xbe:
instruction_ldx(data_absolute_y());
break;
case 0xc0:
instruction_cpy(data_immediate());
break;
case 0xc1:
instruction_cmp(data_indirect_x());
break;
case 0xc4:
instruction_cpy(data_zero_page());
break;
case 0xc5:
instruction_cmp(data_zero_page());
break;
case 0xc6:
instruction_dec(addr_zero_page());
break;
case 0xc8:
instruction_iny();
break;
case 0xc9:
instruction_cmp(data_immediate());
break;
case 0xca:
instruction_dex();
break;
case 0xcc:
instruction_cpy(data_absolute());
break;
case 0xcd:
instruction_cmp(data_absolute());
break;
case 0xce:
instruction_dec(addr_absolute());
break;
case 0xd0:
instruction_bne(addr_relative());
break;
case 0xd1:
instruction_cmp(data_indirect_y());
break;
case 0xd5:
instruction_cmp(data_zero_page_x());
break;
case 0xd6:
instruction_dec(addr_zero_page_x());
break;
case 0xd8:
instruction_cld();
break;
case 0xd9:
instruction_cmp(data_absolute_y());
break;
case 0xdd:
instruction_cmp(data_absolute_x());
break;
case 0xde:
instruction_dec(addr_absolute_x());
break;
case 0xe0:
instruction_cpx(data_immediate());
break;
case 0xe1:
instruction_sbc(data_indirect_x());
break;
case 0xe4:
instruction_cpx(data_zero_page());
break;
case 0xe5:
instruction_sbc(data_zero_page());
break;
case 0xe6:
instruction_inc(addr_zero_page());
break;
case 0xe8:
instruction_inx();
break;
case 0xe9:
instruction_sbc(data_immediate());
break;
case 0xea:
instruction_nop();
break;
case 0xec:
instruction_cpx(data_absolute());
break;
case 0xed:
instruction_sbc(data_absolute());
break;
case 0xee:
instruction_inc(addr_absolute());
break;
case 0xf0:
instruction_beq(addr_relative());
break;
case 0xf1:
instruction_sbc(data_indirect_y());
break;
case 0xf5:
instruction_sbc(data_zero_page_x());
break;
case 0xf6:
instruction_inc(addr_zero_page_x());
break;
case 0xf8:
instruction_sed();
break;
case 0xf9:
instruction_sbc(data_absolute_y());
break;
case 0xfd:
instruction_sbc(data_absolute_x());
break;
case 0xfe:
instruction_inc(addr_absolute_x());
break;
default:
not_implemented();
break;
}
}
void fetch() {
instruction = memory[program_counter++];
printf("%x\n", instruction);
}
unsigned char flag_break() {
return processor_status_flag(STATUS_BIT_BREAK);
}
void flag_break_set() {
processor_status_flag_set(STATUS_BIT_BREAK);
}
void flag_break_unset() {
processor_status_flag_unset(STATUS_BIT_BREAK);
}
unsigned char flag_carry() {
return processor_status_flag(STATUS_BIT_CARRY);
}
void flag_carry_set() {
processor_status_flag_set(STATUS_BIT_CARRY);
}
void flag_carry_unset() {
processor_status_flag_unset(STATUS_BIT_CARRY);
}
unsigned char flag_decimal() {
return processor_status_flag(STATUS_BIT_DECIMAL);
}
void flag_decimal_set() {
processor_status_flag_set(STATUS_BIT_DECIMAL);
}
void flag_decimal_unset() {
processor_status_flag_unset(STATUS_BIT_DECIMAL);
}
unsigned char flag_interrupt() {
return processor_status_flag(STATUS_BIT_INTERRUPT);
}
void flag_interrupt_set() {
processor_status_flag_set(STATUS_BIT_INTERRUPT);
}
void flag_interrupt_unset() {
processor_status_flag_unset(STATUS_BIT_INTERRUPT);
}
unsigned char flag_negative() {
return processor_status_flag(STATUS_BIT_NEGATIVE);
}
void flag_negative_set() {
processor_status_flag_set(STATUS_BIT_NEGATIVE);
}
void flag_negative_unset() {
processor_status_flag_unset(STATUS_BIT_NEGATIVE);
}
unsigned char flag_overflow() {
return processor_status_flag(STATUS_BIT_OVERFLOW);
}
void flag_overflow_set() {
processor_status_flag_set(STATUS_BIT_OVERFLOW);
}
void flag_overflow_unset() {
processor_status_flag_unset(STATUS_BIT_OVERFLOW);
}
unsigned char flag_zero() {
return processor_status_flag(STATUS_BIT_ZERO);
}
void flag_zero_set() {
processor_status_flag_set(STATUS_BIT_ZERO);
}
void flag_zero_unset() {
processor_status_flag_unset(STATUS_BIT_ZERO);
}
void instruction_adc(unsigned char data) {
/*
ADC - Add with Carry
A,Z,C,N = A+M+C
This instruction adds the contents of a memory location to the accumulator together with the carry bit.
If overflow occurs the carry bit is set, this enables multiple byte addition to be performed.
*/
unsigned short sum = accumulator + data + flag_carry();
accumulator = sum;
check_negative(accumulator);
check_overflow(sum);
check_zero(accumulator);
}
void instruction_and(unsigned char data) {
/*
AND - Logical AND
A,Z,N = A&M
A logical AND is performed, bit by bit, on the accumulator contents using the contents of a byte of memory.
*/
accumulator &= data;
check_negative(data);
check_zero(data);
}
void instruction_asl(unsigned short addr) {
/*
ASL - Arithmetic Shift Left
A,Z,C,N = M*2 or M,Z,C,N = M*2
This operation shifts all the bits of the accumulator or memory contents one bit left.
Bit 0 is set to 0 and bit 7 is placed in the carry flag.
The effect of this operation is to multiply the memory contents by 2 (ignoring 2's complement considerations), setting the carry if the result will not fit in 8 bits.
*/
unsigned char *target;
if (addr) {
target = &memory[addr];
} else {
target = &accumulator;
}
if (*target >> 7) {
flag_carry_set();
} else {
flag_carry_unset();
}
*target <<= 1;
check_negative(*target);
check_zero(*target);
}
void instruction_bcc(signed char addr) {
/*
BCC - Branch if Carry Clear
If the carry flag is clear then add the relative displacement to the program counter to cause a branch to a new location.
*/
if (!flag_carry()) {
program_counter += addr;
}
}
void instruction_bcs(signed char addr) {
/*
BCS - Branch if Carry Set
If the carry flag is set then add the relative displacement to the program counter to cause a branch to a new location.
*/
if (flag_carry()) {
program_counter += addr;
}
}
void instruction_beq(signed char addr) {
/*
BEQ - Branch if Equal
If the zero flag is set then add the relative displacement to the program counter to cause a branch to a new location.
*/
if (flag_zero()) {
program_counter += addr;
}
}
void instruction_bit(unsigned char data) {
/*
BIT - Bit Test
A & M, N = M7, V = M6
This instructions is used to test if one or more bits are set in a target memory location.
The mask pattern in A is ANDed with the value in memory to set or clear the zero flag, but the result is not kept.
Bits 7 and 6 of the value from memory are copied into the N and V flags.
*/
unsigned char result = accumulator & data;