-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcalc_moist_deficit.py
171 lines (156 loc) · 8.39 KB
/
calc_moist_deficit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/bin/python
import numpy as np
import sys
import os
import math
from snowpack_functions import import_gridcell_elevation,get_elev_for_lat_lon,lat_lon_adjust,unpack_netcdf_swe_month,mask_latlon,unpack_netcdf_file_var,historical_sum_swe
import pandas as pd
## get command line arguments
args = sys.argv[1:]
basin = args[0]
scenario = args[1]
chunk = args[2]
direc = '/raid9/gergel/agg_snowpack/goodleap/%s' %basin
file_swe = 'SWE_ensavg_%s_%s.nc' %(scenario,basin)
lats,lons,swe,datess = unpack_netcdf_file_var(direc,file_swe,"swe")
soil_file = '/raid9/gergel/agg_snowpack/soil_avail.txt'
elev_corr_info = import_gridcell_elevation(soil_file)
## step 1: load data sources
## PET: all three: NatVeg, Short, Tall
## AET: evaporation plus transpiration
## compare pet and aet from VIC (then see about computing aet using pm reference et)
pet_agg = list()
aet_agg = list()
lats_inc = list()
lons_inc = list()
coms = list()
elevs = list()
## function to be used to find center of mass
def com_array(arr):
## NOTE: input array must be an actual array (not a list)
sums = np.ndarray(shape=(len(arr)-2,1), dtype=float)
for el in np.arange(0,len(arr)-2):
sums[el] = np.sum(arr[:el+1]) - np.sum(arr[el+2:])
## include + 1 because of correcting for the right index of the input array rather than the array of sums
com_index = np.argmin(np.abs(sums)) + 1
return(com_index)
direc = '/raid9/gergel/agg_snowpack/goodleap/%s' %basin
## filename
file_petnat = '%s_ensavg_%s_%s.nc' %("PET_NatVeg",scenario,basin)
file_petshort = '%s_ensavg_%s_%s.nc' %("PET_Short",scenario,basin)
file_pettall = '%s_ensavg_%s_%s.nc' %("PET_Tall",scenario,basin)
file_evap = '%s_ensavg_%s_%s.nc' %("Evaporation",scenario,basin)
file_transp = '%s_ensavg_%s_%s.nc' %("Transp",scenario,basin)
### select daily swe data based on time chunk
if (chunk == "1970-1999"):
years1 = "1970_1979"
years2 = "1980_1989"
years3 = "1990_1999"
elif (chunk == "2010-2039"):
years1 = "2010_2019"
years2 = "2020_2029"
years3 = "2030_2039"
elif (chunk == "2040-2069"):
years1 = "2040_2049"
years2 = "2050_2059"
years3 = "2060_2069"
else:
years1 = "2070_2079"
years2 = "2080_2089"
years3 = "2090_2099"
file_dailyswe1 = 'dailyswe_%s_%s.nc' %(scenario,years1)
file_dailyswe2 = 'dailyswe_%s_%s.nc' %(scenario,years2)
file_dailyswe3 = 'dailyswe_%s_%s.nc' %(scenario,years3)
## load data for pet/aet analysis
lats,lons,petnat,datess_petnat = unpack_netcdf_file_var(direc,file_petnat,"PET_NatVeg")
lats,lons,petshort,datess_petshort = unpack_netcdf_file_var(direc,file_petshort,"PET_Short")
lats,lons,pettall,datess_pettall = unpack_netcdf_file_var(direc,file_pettall,"PET_Tall")
lats,lons,evap,datess_evap = unpack_netcdf_file_var(direc,file_evap,"Evaporation")
lats,lons,transp,datess_transp = unpack_netcdf_file_var(direc,file_transp,"Transp")
## load daily SWE data
direc_dailyswe = '/raid9/gergel/agg_snowpack/goodleap/dailySWE'
lats,lons,swe1,datess_swe1 = unpack_netcdf_file_var(direc_dailyswe,file_dailyswe1,"swe")
lats,lons,swe2,datess_swe2 = unpack_netcdf_file_var(direc_dailyswe,file_dailyswe2,"swe")
lats,lons,swe3,datess_swe3 = unpack_netcdf_file_var(direc_dailyswe,file_dailyswe3,"swe")
## adjust data for hydro years
if (scenario == "historical"):
petnat = petnat[237:-74,:,:]
petshort = petshort[237:-74,:,:]
pettall = pettall[237:-74,:,:]
evap = evap[237:-74,:,:]
transp = transp[237:-74,:,:]
else:
petnat = petnat[45:-2,:,:]
petshort = petshort[45:-2,:,:]
pettall = pettall[45:-2,:,:]
evap = evap[45:-2,:,:]
transp = transp[45:-2,:,:]
for j in np.arange(len(lats)): ## loop over latitude
for k in np.arange(len(lons)): ## loop over longitude
### don't calculate area for missing value elements
if (math.isnan(swe[0,j,k])) == False:
if_in_box = mask_latlon(lats[j],lons[k],basin)
adjust_mask = lat_lon_adjust(lats[j],lons[k],basin)
mean_swe = historical_sum_swe(j,k)
## new historical swe function based on livneh instead of vic simulations
if if_in_box and adjust_mask and mean_swe:
petsum = list()
aetsum = list()
if (scenario == "historical"):
for i in np.arange(30): ## now loop over year
ind = i*12
petsum.append(np.sum(np.asarray(petnat[ind:ind+12,j,k])) + np.sum(np.asarray(petshort[ind:ind+12,j,k])) + np.sum(np.asarray(pettall[ind:ind+12,j,k])))
aetsum.append(np.sum(np.asarray(evap[ind:ind+12,j,k])) + np.sum(np.asarray(transp[ind:ind+12,j,k])))
pet_agg.append(np.asarray(petsum).reshape(len(np.asarray(petsum)),1))
aet_agg.append(np.asarray(aetsum).reshape(1,len(np.asarray(aetsum)),1))
lats_inc.append(lats[j])
lons_inc.append(lons[k])
else:
if (chunk == "2010-2039"):
for i in np.arange(30):
ind = i*12
petsum.append(np.sum(np.asarray(petnat[ind:ind+12,j,k])) + np.sum(np.asarray(petshort[ind:ind+12,j,k])) + np.sum(np.asarray(pettall[ind:ind+12,j,k])))
aetsum.append(np.sum(np.asarray(evap[ind:ind+12,j,k])) + np.sum(np.asarray(transp[ind:ind+12,j,k])))
pet_agg.append(np.asarray(petsum).reshape(len(np.asarray(petsum)),1))
aet_agg.append(np.asarray(aetsum).reshape(1,len(np.asarray(aetsum)),1))
lats_inc.append(lats[j])
lons_inc.append(lons[k])
elif (chunk == "2040-2069"):
for i in np.arange(30,60):
ind = i*12
petsum.append(np.sum(np.asarray(petnat[ind:ind+12,j,k])) + np.sum(np.asarray(petshort[ind:ind+12,j,k])) + np.sum(np.asarray(pettall[ind:ind+12,j,k])))
aetsum.append(np.sum(np.asarray(evap[ind:ind+12,j,k])) + np.sum(np.asarray(transp[ind:ind+12,j,k])))
pet_agg.append(np.asarray(petsum).reshape(len(np.asarray(petsum)),1))
aet_agg.append(np.asarray(aetsum).reshape(1,len(np.asarray(aetsum)),1))
lats_inc.append(lats[j])
lons_inc.append(lons[k])
else:
for i in np.arange(60,90):
ind = i*12
petsum.append(np.sum(np.asarray(petnat[ind:ind+12,j,k])) + np.sum(np.asarray(petshort[ind:ind+12,j,k])) + np.sum(np.asarray(pettall[ind:ind+12,j,k])))
aetsum.append(np.sum(np.asarray(evap[ind:ind+12,j,k])) + np.sum(np.asarray(transp[ind:ind+12,j,k])))
pet_agg.append(np.asarray(petsum).reshape(len(np.asarray(petsum)),1))
aet_agg.append(np.asarray(aetsum).reshape(1,len(np.asarray(aetsum)),1))
lats_inc.append(lats[j])
lons_inc.append(lons[k])
## get elevation of each grid cell for fire analysis
elevs.append(get_elev_for_lat_lon(elev_corr_info,lats[j],lons[k]))
###################### NOW FIGURE OUT SNOWMELT DATE AND STATISTICS ####################################
## concatenate daily swe and dates values, take diff of swe values
dayswe = np.concatenate((np.asarray(swe1[:,j,k]),np.asarray(swe2[:,j,k]),np.asarray(swe3[:,j,k])),axis=0)
datesswe = np.concatenate((datess_swe1,datess_swe2,datess_swe3),axis=0)
## make index of dataframe be dates
df = pd.DataFrame(index=datesswe)
df['colb'] = dayswe
## eliminate months earlier than July
df_half = df[df.index.month < 7]
## group data by year
s = df_half.groupby(lambda x: x.year)
## calculate center of mass of the diff of each year (snowmelt) and round its_centers = s['colb'].apply(lambda x: np.round(ndimage.measurements.center_of_mass(np.diff(x))))
# s_centers = s['colb'].apply(lambda x: np.round(ndimage.measurements.center_of_mass(np.diff(x))))
s_centers = s['colb'].apply(lambda x: com_array(x))
coms.append(s_centers.values.reshape(len(s_centers.values)))
### save arrays to files
filearrayname = '/raid9/gergel/agg_snowpack/%s/moistdef_%s_%s.npz' %(scenario,chunk,basin)
np.savez(filearrayname,lats=np.asarray(lats_inc),lons=np.asarray(lons_inc),elevs=np.asarray(elevs),pet=np.asarray(pet_agg),aet=np.asarray(aet_agg),coms=np.asarray(coms))
print("finished analysis for %s %s" %(scenario,basin))