-
Notifications
You must be signed in to change notification settings - Fork 31
/
run_sample.py
155 lines (131 loc) · 4.75 KB
/
run_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# This pyPI script computes PI and associated analyses over the entire sample dataset
# which is from 2004, MERRA2.
#
# Created by Daniel Gilford, PhD (daniel.gilford@rutgers.edu)
# Many thanks to Daniel Rothenberg for his assitance optimizing pyPI
#
# Last updated 8/14/2020
#
# setup
import xarray as xr
import pickle
# load in pyPI modules
from tcpyPI import pi
from tcpyPI.utilities import *
# define the sample data locations
datdir='./data/'
_FN=datdir+'sample_data.nc'
_mdrF=datdir+'mdr.pk1'
def run_sample_dataset(fn, dim='p',CKCD=0.9):
""" This function calculates PI over the sample dataset using xarray """
# open the sample data file
ds = xr.open_dataset(fn)
# calculate PI over the whole data set using the xarray universal function
result = xr.apply_ufunc(
pi,
ds['sst'], ds['msl'], ds[dim], ds['t'], ds['q'],
kwargs=dict(CKCD=CKCD, ascent_flag=0, diss_flag=1, ptop=50, miss_handle=1),
input_core_dims=[
[], [], [dim, ], [dim, ], [dim, ],
],
output_core_dims=[
[], [], [], [], []
],
vectorize=True
)
# store the result in an xarray data structure
vmax, pmin, ifl, t0, otl = result
out_ds=xr.Dataset({
'vmax': vmax,
'pmin': pmin,
'ifl': ifl,
't0': t0,
'otl': otl,
# merge the state data into the same data structure
'sst': ds.sst,
't': ds.t,
'q': ds.q,
'msl': ds.msl,
'lsm': ds.lsm,
})
# add names and units to the structure
out_ds.vmax.attrs['standard_name'],out_ds.vmax.attrs['units']='Maximum Potential Intensity','m/s'
out_ds.pmin.attrs['standard_name'],out_ds.pmin.attrs['units']='Minimum Central Pressure','hPa'
out_ds.ifl.attrs['standard_name']='pyPI Flag'
out_ds.t0.attrs['standard_name'],out_ds.t0.attrs['units']='Outflow Temperature','K'
out_ds.otl.attrs['standard_name'],out_ds.otl.attrs['units']='Outflow Temperature Level','hPa'
# return the output from pi.py as an xarray data structure
return out_ds
def run_sample_analyses(ds,_mdrF,CKCD=0.9):
""" This function performs PI analyses over the sample dataset using xarray """
# load the basins dictionary
basins = pickle.load( open( _mdrF, "rb" ) )
# calculate PI analyses over the whole data set using the xarray universal function
efficiency = xr.apply_ufunc(
pi_efficiency,
ds['sst']+273.15, ds['t0'],
input_core_dims=[
[], [],
],
output_core_dims=[
[],
],
vectorize=True
)
diseq = xr.apply_ufunc(
pi_diseq_resid,
ds['vmax'], ds['sst']+273.15, ds['t0'],
kwargs=dict(CKCD=CKCD),
input_core_dims=[
[], [], [],
],
output_core_dims=[
[],
],
vectorize=True
)
result = xr.apply_ufunc(
decompose_pi,
ds['vmax'], ds['sst']+273.15, ds['t0'],
kwargs=dict(CKCD=CKCD),
input_core_dims=[
[], [], [],
],
output_core_dims=[
[], [], [], [],
],
vectorize=True
)
lnpi, lneff, lndiseq, lnCKCD = result
out_ds = xr.Dataset({
'eff': efficiency,
'diseq': diseq,
'lnpi': lnpi,
'lneff': lneff,
'lndiseq': lndiseq,
'lnCKCD': lnCKCD[0,0,0]
})
# add names and units (where applicable)
out_ds.eff.attrs['standard_name'],out_ds.eff.attrs['units']='Tropical Cyclone Efficiency','unitless fraction'
out_ds.diseq.attrs['standard_name'],out_ds.diseq.attrs['units']='Thermodynamic Disequilibrium','J/kg'
out_ds.lnpi.attrs['standard_name']='Natural log(Potential Intensity)'
out_ds.lneff.attrs['standard_name']='Natural log(Tropical Cyclone Efficiency)'
out_ds.lndiseq.attrs['standard_name']='Natural log(Thermodynamic Disequilibrium)'
out_ds.lnCKCD.attrs['standard_name'],out_ds.lnCKCD.attrs['units']='Natural log(Ck/CD)','unitless constant'
# return the output from pi.py as an xarray data structure
return out_ds
if __name__ == "__main__":
# Execute PI analysis over the whole dataset and save the output
print('Beginning PI computations...')
ds = run_sample_dataset(_FN)
ds.to_netcdf(datdir+'raw_sample_output.nc')
print('...PI computation complete and saved\n')
# Perform PI analyses over the whole dataset
print('Performing PI analyses...')
ds2 = run_sample_analyses(ds,_mdrF,CKCD=0.9)
# merge the arrays and save the output
ds3=ds.merge(ds2)
ds3.to_netcdf(datdir+'full_sample_output.nc')
del ds, ds2
print('...PI analyses complete and saved')
print('pyPI sample run finished!')