-
Notifications
You must be signed in to change notification settings - Fork 21
/
graph_draw.m
588 lines (562 loc) · 23 KB
/
graph_draw.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
function h = graph_draw(adj, xy, varargin)
% GRAPH_DRAW Draw a picture of a graph when the coordinates are known
%
% graph_draw(A, xy) draws a picture of graph A where node i is placed
% at x = xy(i,1), y = xy(i,2). In the drawing, shaded nodes have
% self loops.
%
% Some of the parameters of the drawing are controlled by specifying
% optional parameters in the call graph_draw(A, xy, key, value). The keys
% and default values are
% 'linestyle' - default '-'
% 'linewidth' - default .5
% 'linecolor' - default Black
% 'fontsize' - fontsize for labels, default 8
% 'labels' - Cell array containing labels <Default : '1':'N'>
% 'shapes' - 1 if node is a box, 0 if oval <Default : zeros>
%
% h = graph_draw(A,xy,...) returns a handle for each object. h(i,1) is
% the text handle for vertex i, and h(i,2) is the circle handle for
% vertex i.
%
% Originally written by Erik A. Johnson, Ali Taylan Cemgil, and Leon Peskin
% Modified by David F. Gleich for gaimc package.
%
% See also GPLOT
%
% Example:
% load_gaimc_graph('dfs_example');
% graph_draw(A,xy);
% 2009-02-26 interface modified by David Gleich <dgleich@stanford.edu>
% to remove automatic layout
% 2009-05-15: Added example
% 24 Feb 2004 cleaned up, optimized and corrected by Leon Peshkin pesha @ ai.mit.edu
% Apr-2000 draw_graph Ali Taylan Cemgil <cemgil@mbfys.kun.nl>
% 1995-1997 arrow Erik A. Johnson <johnsone@uiuc.edu>
linestyle = '-'; % -- -.
linewidth = .5; % 2
linecolor = 'Black'; % Red
fontsize = 8;
N = size(adj,1);
color = ones(N, 3); % colors of elipses around text
labels = cellstr(int2str((1:N)')); % labels = cellstr(char(zeros(N,1)+double('+')));
node_t = zeros(N,1); %
for i = 1:2:length(varargin) % get optional args
switch varargin{i}
case 'linestyle', linestyle = varargin{i+1};
case 'linewidth', linewidth = varargin{i+1};
case 'linecolor', linecolor = varargin{i+1};
case 'labels', labels = varargin{i+1};
case 'fontsize', fontsize = varargin{i+1};
case 'shapes', node_t = varargin{i+1}; node_t = node_t(:);
end
end
x = xy(:,1);
x = x - min(x);
y = xy(:,2);
y = y - min(y);
% scale the graph so it's between 0 and 1
xrange = max(x);
yrange = max(y);
scalefactor = max(xrange,yrange);
x = x/scalefactor;
y = y/scalefactor;
lp_ndx = find(diag(adj)); % recover from self-loops = diagonal ones
color(lp_ndx,:) = repmat([.8 .8 .8],length(lp_ndx),1); % makes self-looped nodes blue
adj = adj - diag(diag(adj)); % clean up the diagonal
axis([-0.1 1.1 -0.1 1.1]);
axis off;
set(gcf,'Color',[1 1 1]);
set(gca,'XTick',[], 'YTick',[], 'box','on'); % axis('square'); %colormap(flipud(gray));
idx1 = find(node_t == 0); wd1 = []; % Draw nodes
if ~isempty(idx1),
[h1 wd1] = textoval(x(idx1), y(idx1), labels(idx1), fontsize, color);
end;
idx2 = find(node_t ~= 0); wd2 = [];
if ~isempty(idx2),
[h2 wd2] = textbox(x(idx2), y(idx2), labels(idx2), color);
end;
wd = zeros(size(wd1,1) + size(wd2,1),2);
if ~isempty(idx1), wd(idx1, :) = wd1; end;
if ~isempty(idx2), wd(idx2, :) = wd2; end;
for node = 1:N % Draw edges
edges = find(adj(node,:) == 1);
for node2 = edges
sign = 1;
if ((x(node2) - x(node)) == 0)
if (y(node) > y(node2)), alpha = -pi/2; else alpha = pi/2; end;
else
alpha = atan((y(node2)-y(node))/(x(node2)-x(node)));
if (x(node2) <= x(node)), sign = -1; end;
end;
dy1 = sign.*wd(node,2).*sin(alpha); dx1 = sign.*wd(node,1).*cos(alpha);
dy2 = sign.*wd(node2,2).*sin(alpha); dx2 = sign.*wd(node2,1).*cos(alpha);
if (adj(node2,node) == 0) % if directed edge
my_arrow([x(node)+dx1 y(node)+dy1], [x(node2)-dx2 y(node2)-dy2]);
else
line([x(node)+dx1 x(node2)-dx2], [y(node)+dy1 y(node2)-dy2], ...
'Color', linecolor, 'LineStyle', linestyle, 'LineWidth', linewidth);
adj(node2,node) = -1; % Prevent drawing lines twice
end;
end;
end;
if nargout > 2
h = zeros(length(wd),2);
if ~isempty(idx1), h(idx1,:) = h1; end;
if ~isempty(idx2), h(idx2,:) = h2; end;
end;
function [t, wd] = textoval(x, y, str, fontsize, c)
% [t, wd] = textoval(x, y, str, fontsize) Draws an oval around text objects
% INPUT: x, y - Coordinates
% str - Strings
% c - colors
% OUTPUT: t - Object Handles
% width - x and y width of ovals
if ~isa(str,'cell'), str = cellstr(str); end;
N = length(str);
wd = zeros(N,2);
temp = zeros(N,2);
for i = 1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlign','middle','FontSize', fontsize);
sz = get(tx, 'Extent');
wy = sz(4);
wx = max(2/3*sz(3), wy);
wx = 0.9 * wx; % might want to play with this .9 and .5 coefficients
wy = 0.5 * wy;
ptc = ellipse(x(i), y(i), wx, wy, c(i,:));
set(ptc, 'FaceColor', c(i,:)); % 'w'
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlign','middle', 'FontSize', fontsize);
temp(i,:) = [tx ptc];
end;
t = temp;
function [p] = ellipse(x, y, rx, ry, c)
% [p] = ellipse(x, y, rx, ry) Draws Ellipse shaped patch objects
% INPUT: x,y - N x 1 vectors of x and y coordinates
% Rx, Ry - Radii
% C - colors
% OUTPUT: p - Handles of Ellipse shaped path objects
if length(rx)== 1, rx = ones(size(x)).*rx; end;
if length(ry)== 1, ry = ones(size(x)).*ry; end;
N = length(x);
p = zeros(size(x));
t = 0:pi/30:2*pi;
for i = 1:N
px = rx(i) * cos(t) + x(i); py = ry(i) * sin(t) + y(i);
p(i) = patch(px, py, c(i,:));
end;
function [h, wd] = textbox(x,y,str,c)
% [h, wd] = textbox(x,y,str) draws a box around the text
% INPUT: x, y - Coordinates
% str - Strings
% OUTPUT: h - Object Handles
% wd - x and y Width of boxes
if ~isa(str,'cell'), str=cellstr(str); end
N = length(str);
wd = zeros(N,2);
h = zeros(N,2);
for i = 1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlign','middle');
sz = get(tx, 'Extent');
wy = 2/3 * sz(4); wyB = y(i) - wy; wyT = y(i) + wy;
wx = max(2/3 * sz(3), wy); wxL = x(i) - wx; wxR = x(i) + wx;
ptc = patch([wxL wxR wxR wxL], [wyT wyT wyB wyB], c(i,:));
set(ptc, 'FaceColor', c(i,:)); % 'w'
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlign','middle');
h(i,:) = [tx ptc];
end;
function [h,yy,zz] = my_arrow(varargin)
% [h,yy,zz] = my_arrow(varargin) Draw a line with an arrowhead.
% A lot of the original code is removed and most of the remaining can probably go too
% since it comes from a general use function only being called inone context. - Leon Peshkin
% Copyright 1997, Erik A. Johnson <johnsone@uiuc.edu>, 8/14/97
ax = []; % set values to empty matrices
deflen = 12; % 16
defbaseangle = 45; % 90
deftipangle = 16;
defwid = 0; defpage = 0; defends = 1;
ArrowTag = 'Arrow'; % The 'Tag' we'll put on our arrows
start = varargin{1}; % fill empty arguments
stop = varargin{2};
crossdir = [NaN NaN NaN];
len = NaN; baseangle = NaN; tipangle = NaN; wid = NaN;
page = 0; ends = NaN;
start = [start NaN]; stop = [stop NaN];
o = 1; % expand single-column arguments
ax = gca;
% set up the UserData data (here so not corrupted by log10's and such)
ud = [start stop len baseangle tipangle wid page crossdir ends];
% Get axes limits, range, min; correct for aspect ratio and log scale
axm = zeros(3,1); axr = axm; axrev = axm; ap = zeros(2,1);
xyzlog = axm; limmin = ap; limrange = ap; oldaxlims = zeros(1,7);
oneax = 1; % all(ax==ax(1)); LPM
if (oneax),
T = zeros(4,4); invT = zeros(4,4);
else
T = zeros(16,1); invT = zeros(16,1);
end
axnotdone = 1; % logical(ones(size(ax))); LPM
while (any(axnotdone))
ii = 1; % LPM min(find(axnotdone));
curax = ax(ii);
curpage = page(ii);
% get axes limits and aspect ratio
axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')];
oldaxlims(find(oldaxlims(:,1)==0, 1),:) = [curax reshape(axl',1,6)];
% get axes size in pixels (points)
u = get(curax,'Units');
axposoldunits = get(curax,'Position');
really_curpage = curpage & strcmp(u,'normalized');
if (really_curpage)
curfig = get(curax,'Parent'); pu = get(curfig,'PaperUnits');
set(curfig,'PaperUnits','points'); pp = get(curfig,'PaperPosition');
set(curfig,'PaperUnits',pu); set(curax,'Units','pixels');
curapscreen = get(curax,'Position'); set(curax,'Units','normalized');
curap = pp.*get(curax,'Position');
else
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
curap = curapscreen;
end
set(curax,'Units',u); set(curax,'Position',axposoldunits);
% handle non-stretched axes position
str_stretch = {'DataAspectRatioMode'; 'PlotBoxAspectRatioMode' ; 'CameraViewAngleMode' };
str_camera = {'CameraPositionMode' ; 'CameraTargetMode' ; ...
'CameraViewAngleMode' ; 'CameraUpVectorMode'};
notstretched = strcmp(get(curax,str_stretch),'manual');
manualcamera = strcmp(get(curax,str_camera),'manual');
if ~arrow_WarpToFill(notstretched,manualcamera,curax)
% find the true pixel size of the actual axes
texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ...
axl(2,[1 1 2 2 1 1 2 2]), axl(3,[1 1 1 1 2 2 2 2]),'');
set(texttmp,'Units','points');
textpos = get(texttmp,'Position');
delete(texttmp);
textpos = cat(1,textpos{:});
textpos = max(textpos(:,1:2)) - min(textpos(:,1:2));
% adjust the axes position
if (really_curpage) % adjust to printed size
textpos = textpos * min(curap(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
else % adjust for pixel roundoff
textpos = textpos * min(curapscreen(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
end
end
% adjust limits for log scale on axes
curxyzlog = [strcmp(get(curax,'XScale'),'log'); ...
strcmp(get(curax,'YScale'),'log'); strcmp(get(curax,'ZScale'),'log')];
if (any(curxyzlog))
ii = find([curxyzlog;curxyzlog]);
if (any(axl(ii)<=0))
error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']);
else
axl(ii) = log10(axl(ii));
end
end
% correct for 'reverse' direction on axes;
curreverse = [strcmp(get(curax,'XDir'),'reverse'); ...
strcmp(get(curax,'YDir'),'reverse'); strcmp(get(curax,'ZDir'),'reverse')];
ii = find(curreverse);
if ~isempty(ii)
axl(ii,[1 2])=-axl(ii,[2 1]);
end
% compute the range of 2-D values
curT = get(curax,'Xform');
lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1];
lim = lim(1:2,:)./([1;1]*lim(4,:));
curlimmin = min(lim,[],2);
curlimrange = max(lim,[],2) - curlimmin;
curinvT = inv(curT);
if ~oneax
curT = curT.'; curinvT = curinvT.'; curT = curT(:); curinvT = curinvT(:);
end
% check which arrows to which cur corresponds
ii = find((ax==curax)&(page==curpage));
oo = ones(1,length(ii)); axr(:,ii) = diff(axl,1,2) * oo;
axm(:,ii) = axl(:,1) * oo; axrev(:,ii) = curreverse * oo;
ap(:,ii) = curap(3:4)' * oo; xyzlog(:,ii) = curxyzlog * oo;
limmin(:,ii) = curlimmin * oo; limrange(:,ii) = curlimrange * oo;
if (oneax),
T = curT; invT = curinvT;
else
T(:,ii) = curT * oo; invT(:,ii) = curinvT * oo;
end;
axnotdone(ii) = zeros(1,length(ii));
end;
oldaxlims(oldaxlims(:,1)==0,:) = [];
% correct for log scales
curxyzlog = xyzlog.'; ii = find(curxyzlog(:));
if ~isempty(ii)
start(ii) = real(log10(start(ii))); stop(ii) = real(log10(stop(ii)));
if (all(imag(crossdir)==0)) % pulled (ii) subscript on crossdir, 12/5/96 eaj
crossdir(ii) = real(log10(crossdir(ii)));
end
end
ii = find(axrev.'); % correct for reverse directions
if ~isempty(ii)
start(ii) = -start(ii); stop(ii) = -stop(ii); crossdir(ii) = -crossdir(ii);
end
start = start.'; stop = stop.'; % transpose start/stop values
% take care of defaults, page was done above
ii = find(isnan(start(:))); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end;
ii = find(isnan(stop(:))); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end;
ii = find(isnan(crossdir(:))); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end;
ii = find(isnan(len)); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end;
baseangle(ii) = ones(length(ii),1)*defbaseangle; tipangle(ii) = ones(length(ii),1)*deftipangle;
wid(ii) = ones(length(ii),1) * defwid; ends(ii) = ones(length(ii),1) * defends;
% transpose rest of values
len = len.'; baseangle = baseangle.'; tipangle = tipangle.'; wid = wid.';
page = page.'; crossdir = crossdir.'; ends = ends.'; ax = ax.';
% for all points with start==stop, start=stop-(verysmallvalue)*(up-direction);
ii = find(all(start==stop));
if ~isempty(ii)
% find an arrowdir vertical on screen and perpendicular to viewer
% transform to 2-D
tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))];
if (oneax), twoD=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)';
end
twoD=twoD./(ones(4,1)*twoD(4,:));
% move the start point down just slightly
tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii));
% transform back to 3-D
if (oneax), threeD=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)';
end
start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii);
end;
% compute along-arrow points
% transform Start points
tmp1 = [(start-axm)./axr; 1];
if (oneax), X0=T*tmp1;
else tmp1 = [tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2 = zeros(4,4); tmp2(:)=tmp1(:);
X0=zeros(4,1); X0(:)=sum(tmp2)';
end
X0=X0./(ones(4,1)*X0(4,:));
% transform Stop points
tmp1=[(stop-axm)./axr; 1];
if (oneax), Xf=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4); tmp2(:)=tmp1(:);
Xf=zeros(4,1); Xf(:)=sum(tmp2)';
end
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute pixel distance between points
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2));
% compute and modify along-arrow distances
len1 = len;
len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi);
slen0 = 0; slen1 = len1 .* ((ends==2)|(ends==3));
slen2 = len2 .* ((ends==2)|(ends==3));
len0 = 0; len1 = len1 .* ((ends==1)|(ends==3));
len2 = len2 .* ((ends==1)|(ends==3));
ii = find((ends==1)&(D<len2)); % for no start arrowhead
if ~isempty(ii),
slen0(ii) = D(ii)-len2(ii);
end;
ii = find((ends==2)&(D<slen2)); % for no end arrowhead
if ~isempty(ii),
len0(ii) = D(ii)-slen2(ii);
end;
len1 = len1 + len0; len2 = len2 + len0;
slen1 = slen1 + slen0; slen2 = slen2 + slen0;
% note: the division by D below will probably not be accurate if both
% of the following are true:
% 1. the ratio of the line length to the arrowhead
% length is large
% 2. the view is highly perspective.
% compute stoppoints
tmp1 = X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D));
if (oneax), tmp3 = invT*tmp1;
else tmp1 = [tmp1;tmp1;tmp1;tmp1]; tmp1 = invT.*tmp1;
tmp2 = zeros(4,4); tmp2(:) = tmp1(:);
tmp3 = zeros(4,1); tmp3(:) = sum(tmp2)';
end
stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute tippoints
tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D));
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4); tmp2(:)=tmp1(:);
tmp3=zeros(4,1); tmp3(:)=sum(tmp2)';
end
tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute basepoints
tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D));
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4); tmp2(:)=tmp1(:);
tmp3=zeros(4,1); tmp3(:)=sum(tmp2)';
end
basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute startpoints
tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D));
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4); tmp2(:) = tmp1(:);
tmp3=zeros(4,1); tmp3(:) = sum(tmp2)';
end
startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute stippoints
tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D));
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1 = invT.*tmp1;
tmp2=zeros(4,4); tmp2(:)=tmp1(:);
tmp3=zeros(4,1); tmp3(:)=sum(tmp2)';
end
stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute sbasepoints
tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D));
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4); tmp2(:)=tmp1(:);
tmp3=zeros(4,1); tmp3(:)=sum(tmp2)';
end
sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute cross-arrow directions for arrows with NormalDir specified
if (any(imag(crossdir(:))~=0)),
ii = find(any(imag(crossdir)~=0));
crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ...
imag(crossdir(:,ii))).*axr(:,ii);
end;
basecross = crossdir + basepoint; % compute cross-arrow directions
tipcross = crossdir + tippoint; sbasecross = crossdir + sbasepoint;
stipcross = crossdir + stippoint;
ii = find(all(crossdir==0)|any(isnan(crossdir)));
if ~isempty(ii),
numii = length(ii);
% transform start points
tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)];
tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]);
tmp1 = [tmp1; ones(1,4*numii)];
if (oneax), X0=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
X0=zeros(4,4*numii); X0(:)=sum(tmp2)';
end
X0=X0./(ones(4,1)*X0(4,:));
% transform stop points
tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)];
tmp1 = [tmp1 tmp1 tmp1 tmp1];
if (oneax) Xf=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)';
end
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute perpendicular directions
pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2;
pixfact = [pixfact pixfact pixfact pixfact];
pixfact = [pixfact;1./pixfact];
[dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:)));
jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj);
jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj));
jj3 = jj1(1:2,:);
Xp = X0;
Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1);
Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3);
% inverse transform the cross points
if (oneax), Xp=invT*Xp;
else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end;
Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]);
basecross(:,ii) = Xp(:,0*numii+(1:numii));
tipcross(:,ii) = Xp(:,1*numii+(1:numii));
sbasecross(:,ii) = Xp(:,2*numii+(1:numii));
stipcross(:,ii) = Xp(:,3*numii+(1:numii));
end;
% compute all points
% compute start points
axm11 = [axm axm axm axm axm axm axm axm axm axm axm];
axr11 = [axr axr axr axr axr axr axr axr axr axr axr];
st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint];
tmp1 = (st - axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), X0=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44); tmp2(:)=tmp1(:);
X0=zeros(4,11); X0(:)=sum(tmp2)';
end
X0=X0./(ones(4,1)*X0(4,:));
% compute stop points
tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ...
- axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), Xf=T*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44); tmp2(:)=tmp1(:);
Xf=zeros(4,11); Xf(:)=sum(tmp2)';
end
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute lengths
len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi);
slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi);
le = [0 len0 wid/2 wid/2 slen0 0 -slen0 -wid/2 -wid/2 -len0 0];
aprange = ap./limrange;
aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange];
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2));
Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end;
tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D));
% inverse transform
if (oneax), tmp3=invT*tmp1;
else tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1;
tmp2=zeros(4,44); tmp2(:)=tmp1(:);
tmp3=zeros(4,11); tmp3(:)=sum(tmp2)';
end
pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11;
% correct for ones where the crossdir was specified
ii = find(~(all(crossdir==0)|any(isnan(crossdir))));
if ~isempty(ii),
D1 = [pts(:,1+ii)-pts(:,9+ii) pts(:,2+ii)-pts(:,8+ii) ...
pts(:,3+ii)-pts(:,7+ii) pts(:,4+ii)-pts(:,6+ii) ...
pts(:,6+ii)-pts(:,4+ii) pts(:,7+ii)-pts(:,3+ii) ...
pts(:,8+ii)-pts(:,2+ii) pts(:,9+ii)-pts(:,1+ii)]/2;
ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]; ii = ii(:)';
pts(:,ii) = st(:,ii) + D1;
end;
% readjust for reverse directions
iicols = (1:1)'; iicols = iicols(:,ones(1,11)); iicols = iicols(:).';
tmp1 = axrev(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end;
% readjust for log scale on axes
tmp1 = xyzlog(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end;
% compute the x,y,z coordinates of the patches;
ii = (0:10)' + ones(11,1);
ii = ii(:)';
x = zeros(11,1); y = x; z = x;
x(:) = pts(1,ii)'; y(:) = pts(2,ii)'; z(:) = pts(3,ii)';
% do the output
% % create or modify the patches
H = 0;
% % make or modify the arrows
if arrow_is2DXY(ax(1)), zz=[]; else zz=z(:,1); end;
xyz = {'XData',x(:,1),'YData',y(:,1),'ZData',zz,'Tag',ArrowTag};
H(1) = patch(xyz{:});
% % additional properties
set(H,'Clipping','off');
set(H,{'UserData'},num2cell(ud,2));
% make sure the axis limits did not change
function [out,is2D] = arrow_is2DXY(ax)
% check if axes are 2-D X-Y plots, may not work for modified camera angles, etc.
out = zeros(size(ax)); % 2-D X-Y plots
is2D = out; % any 2-D plots
views = get(ax(:),{'View'});
views = cat(1,views{:});
out(:) = abs(views(:,2))==90;
is2D(:) = out(:) | all(rem(views',90)==0)';
function out = arrow_WarpToFill(notstretched,manualcamera,curax) %#ok<INUSL>
% check if we are in "WarpToFill" mode.
out = strcmp(get(curax,'WarpToFill'),'on');
% 'WarpToFill' is undocumented, so may need to replace this by
% out = ~( any(notstretched) & any(manualcamera) );