-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·58 lines (47 loc) · 1.78 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from __future__ import division
import numpy as np
import torch
import json
import logging
def setup_logger(logger_name, log_file, level=logging.INFO):
l = logging.getLogger(logger_name)
formatter = logging.Formatter("%(asctime)s : %(message)s")
fileHandler = logging.FileHandler(log_file, mode="w")
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
l.setLevel(level)
l.addHandler(fileHandler)
l.addHandler(streamHandler)
def read_config(file_path):
"""Read JSON config."""
json_object = json.load(open(file_path, "r"))
return json_object
def norm_col_init(weights, std=1.0):
x = torch.randn(weights.size())
x *= std / torch.sqrt((x**2).sum(1, keepdim=True))
return x
def ensure_shared_grads(model, shared_model, gpu=False):
for param, shared_param in zip(model.parameters(), shared_model.parameters()):
if shared_param.grad is not None and not gpu:
return
elif not gpu:
shared_param._grad = param.grad
else:
shared_param._grad = param.grad.cpu()
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
weight_shape = list(m.weight.data.size())
fan_in = np.prod(weight_shape[1:4])
fan_out = np.prod(weight_shape[2:4]) * weight_shape[0]
w_bound = np.sqrt(6.0 / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
m.bias.data.fill_(0)
elif classname.find("Linear") != -1:
weight_shape = list(m.weight.data.size())
fan_in = weight_shape[1]
fan_out = weight_shape[0]
w_bound = np.sqrt(6.0 / (fan_in + fan_out))
m.weight.data.uniform_(-w_bound, w_bound)
m.bias.data.fill_(0)