-
Notifications
You must be signed in to change notification settings - Fork 0
/
Chapter04I.tex
85 lines (74 loc) · 3.61 KB
/
Chapter04I.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
\section{取样定理}
\subsection{信号的取样}
\begin{BoxDefinition}[理想取样]
理想取样,又叫周期单位冲激取样,设取样脉冲为$s(t) = \delta_{T_s}(t)$,则
\begin{Equation}
s(t) = \delta_{T_s}(t) = \sum\limits_{n=-\infty}^{\infty} \delta(t-nT_s) \longleftrightarrow S(\mathrm{j}\omega) = \omega_s \sum\limits_{n=-\infty}^{\infty} \delta(\omega - n\omega_s)
\end{Equation}
则
\begin{Equation}
f_s(t) = f(t)\delta_{T_s}(t) = \sum\limits_{n=-\infty}^{\infty}f(nT_s)\delta(t-nT_s)
\end{Equation}
\begin{Equation}
F_s(\mathrm{j}\omega) = \mathscr{F}\left[f(t)\delta_{T_s}(t)\right] = \frac{1}{2\pi}F(\mathrm{j}\omega)*\omega_s\delta_{\omega_s}(\omega) = \frac{1}{T_s}\sum\limits_{n=-\infty}^{\infty}F\left[\mathrm{j}(\omega-n\omega_s)\right]
\end{Equation}
\end{BoxDefinition}
\begin{BoxProperty}[冲激取样信号的频谱]
设$T_s$为取样间隔,$\omega_s$为取样角频率。当$\omega_s$满足下式时频谱不发生混叠,可以从$F_s(\mathrm{j}\omega)$中取出$F(\mathrm{j}\omega)$,即从$f_s(t)$中恢复原信号$f(t)$。
\begin{Equation}
\omega_s \geq 2\omega_m
\end{Equation}
\end{BoxProperty}
\subsection{时域取样定理}
\begin{BoxTheorem}[时域取样定理]
一个频谱在区间$(-\omega_m,\omega_m)$以外为$0$的带限信号$f(t)$,可唯一地由其在均匀间隔$T_s\left[T_s\leq\frac{1}{2f_m}\right]$上的样点值$f(kT_s)$确定。
\end{BoxTheorem}
\begin{BoxProperty}[取样信号恢复原信号]
理想低通滤波器
\begin{Equation}
H(\mathrm{j}\omega) = \left\{\begin{aligned}
T_s & , & |\omega| < \omega_c \\
0 & , & |\omega| > \omega_c
\end{aligned}
\right.
\end{Equation}
则将取样信号通过理想低通滤波器即可恢复原信号
\begin{Equation}
F(\mathrm{j}\omega) = F_s(\mathrm{j}\omega)H(\mathrm{j}\omega) \longleftrightarrow f(t) = f_s(t)*h(t)
\end{Equation}
其中$\omega_c$满足$\omega_m\leq\omega_c\leq\omega_s-\omega_m$
\begin{Figure}[取样信号恢复原信号]
\begin{FigureSub}[原始取样信号]
\includegraphics[width=50mm]{visio/4.14.pdf}
\end{FigureSub}
\begin{FigureSub}[理想低通滤波器]
\includegraphics[width=40mm]{visio/4.14-b.pdf}
\end{FigureSub}
\begin{FigureSub}[原始信号频谱]
\includegraphics[width=30mm]{visio/4.14-c.pdf}
\end{FigureSub}
\end{Figure}
即
\begin{Equation}
\begin{aligned}
f(t) = f_s(t)*h(t) & = \left[\sum\limits_{n=-\infty}^{\infty}f(nT_s)\delta(t-nT_s)\right]*\left[T_s\frac{\omega_s}{\pi}\mathrm{Sa}(\omega_c t)\right] \\
& = T_s\frac{\omega_s}{\pi}\sum\limits_{-\infty}^{\infty}f(nT_s)\mathrm{Sa}\left[\omega_c(t-nT_s)\right]
\end{aligned}
\end{Equation}
当$\omega_s=2\omega_m$,则$\omega_c = \omega_m$,$T_s = \frac{2\pi}{\omega_s} = \frac{\pi}{\omega_c}$,此时
\begin{Equation}
f(t) = \sum\limits_{n=-\infty}^{\infty}f(nT_s)\mathrm{Sa}\left[\omega_c(t-nT_s)\right]
\end{Equation}
\end{BoxProperty}
\begin{BoxDefinition}[奈奎斯特频率与间隔]
恢复原信号必须满足两个条件,一是$f(t)$必须是带限信号,二是取样频率不能太低,满足
\begin{Equation}
f_s\geq2f_m
\end{Equation}
或者取样间隔满足
\begin{Equation}
T_s\leq\frac{1}{2f_m}
\end{Equation}
否则会产生混叠。
其中$f_s = 2f_m$称为奈奎斯特频率,$T_s = \frac{1}{2f_m}$称为奈奎斯特间隔。
\end{BoxDefinition}