-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect.py
115 lines (90 loc) · 3.1 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#! /usr/bin/python
import cv2
import numpy as np
def diffUpDown(img):
# compare top and bottom size of the image
# 1. cut image in two
# 2. flip the top side
# 3. resize to same size
# 4. compare difference
height, width, depth = img.shape
half = height/2
top = img[0:half, 0:width]
bottom = img[half:half+half, 0:width]
top = cv2.flip(top,1)
bottom = cv2.resize(bottom, (32, 64))
top = cv2.resize(top, (32, 64))
return ( mse(top,bottom) )
def diffLeftRight(img):
# compare left and right size of the image
# 1. cut image in two
# 2. flip the right side
# 3. resize to same size
# 4. compare difference
height, width, depth = img.shape
half = width/2
left = img[0:height, 0:half]
right = img[0:height, half:half + half-1]
right = cv2.flip(right,1)
left = cv2.resize(left, (32, 64))
right = cv2.resize(right, (32, 64))
return ( mse(left,right) )
def mse(imageA, imageB):
err = np.sum((imageA.astype("float") - imageB.astype("float")) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
return err
def isNewRoi(rx,ry,rw,rh,rectangles):
for r in rectangles:
if abs(r[0] - rx) < 40 and abs(r[1] - ry) < 40:
return False
return True
def detectRegionsOfInterest(frame, cascade):
scaleDown = 2
frameHeight, frameWidth, fdepth = frame.shape
# Resize
frame = cv2.resize(frame, (frameWidth/scaleDown, frameHeight/scaleDown))
frameHeight, frameWidth, fdepth = frame.shape
# haar detection.
cars = cascade.detectMultiScale(frame, 1.2, 1)
newRegions = []
minY = int(frameHeight*0.3)
# iterate regions of interest
for (x,y,w,h) in cars:
roi = [x,y,w,h]
roiImage = frame[y:y+h, x:x+w]
carWidth = roiImage.shape[0]
if y > minY:
diffX = diffLeftRight(roiImage)
diffY = round(diffUpDown(roiImage))
if diffX > 1600 and diffX < 3000 and diffY > 12000:
rx,ry,rw,rh = roi
newRegions.append( [rx*scaleDown,ry*scaleDown,rw*scaleDown,rh*scaleDown] )
return newRegions
def detectCars(filename):
rectangles = []
cascade = cv2.CascadeClassifier('cars3.xml')
vc = cv2.VideoCapture(filename)
if vc.isOpened():
rval , frame = vc.read()
else:
rval = False
roi = [0,0,0,0]
frameCount = 0
while rval:
rval, frame = vc.read()
frameHeight, frameWidth, fdepth = frame.shape
newRegions = detectRegionsOfInterest(frame, cascade)
for region in newRegions:
if isNewRoi(region[0],region[1],region[2],region[3],rectangles):
rectangles.append(region)
for r in rectangles:
cv2.rectangle(frame,(r[0],r[1]),(r[0]+r[2],r[1]+r[3]),(0,0,255),3)
frameCount = frameCount + 1
if frameCount > 30:
frameCount = 0
rectangles = []
# show result
cv2.imshow("Result",frame)
cv2.waitKey(1);
vc.release()
detectCars('detectCars1.mp4')