-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrappers.py
executable file
·689 lines (628 loc) · 27.7 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
import numpy as np
import sys,os
import scipy.io
import pynapple as nap
import pandas as pd
import scipy.signal
from numba import jit
'''
Wrappers should be able to distinguish between raw data or matlab processed data
'''
def loadSpikeData(path, index=None, fs = 20000):
"""
if the path contains a folder named /Analysis,
the script will look into it to load either
- SpikeData.mat saved from matlab
- SpikeData.h5 saved from this same script
if not, the res and clu file will be loaded
and an /Analysis folder will be created to save the data
Thus, the next loading of spike times will be faster
Notes :
If the frequency is not givne, it's assumed 20kH
Args:
path : string
Returns:
dict, array
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
new_path = os.path.join(path, 'Analysis/')
if os.path.exists(new_path):
new_path = os.path.join(path, 'Analysis/')
files = os.listdir(new_path)
if 'SpikeData.mat' in files:
spikedata = scipy.io.loadmat(new_path+'SpikeData.mat')
shank = spikedata['shank'] - 1
if index is None:
shankIndex = np.arange(len(shank))
else:
shankIndex = np.where(shank == index)[0]
spikes = {}
for i in shankIndex:
spikes[i] = nts.Ts(spikedata['S'][0][0][0][i][0][0][0][1][0][0][2], time_units = 's')
a = spikes[0].as_units('s').index.values
if ((a[-1]-a[0])/60.)/60. > 20. : # VERY BAD
spikes = {}
for i in shankIndex:
spikes[i] = nts.Ts(spikedata['S'][0][0][0][i][0][0][0][1][0][0][2]*0.0001, time_units = 's')
return spikes, shank
elif 'SpikeData.h5' in files:
final_path = os.path.join(new_path, 'SpikeData.h5')
try:
spikes = pd.read_hdf(final_path, mode='r')
# Returning a dictionnary | can be changed to return a dataframe
toreturn = {}
for i,j in spikes:
toreturn[j] = nts.Ts(t=spikes[(i,j)].replace(0,np.nan).dropna().index.values, time_units = 's')
shank = spikes.columns.get_level_values(0).values[:,np.newaxis]
return toreturn, shank
except:
spikes = pd.HDFStore(final_path, 'r')
shanks = spikes['/shanks']
toreturn = {}
for j in shanks.index:
toreturn[j] = nts.Ts(spikes['/spikes/s'+str(j)])
shank = shanks.values
spikes.close()
del spikes
return toreturn, shank
else:
print("Couldn't find any SpikeData file in "+new_path)
print("If clu and res files are present in "+path+", a SpikeData.h5 is going to be created")
# Creating /Analysis/ Folder here if not already present
if not os.path.exists(new_path): os.makedirs(new_path)
files = os.listdir(path)
clu_files = np.sort([f for f in files if 'clu' in f and f[0] != '.'])
res_files = np.sort([f for f in files if 'res' in f and f[0] != '.'])
clu1 = np.sort([int(f.split(".")[-1]) for f in clu_files])
clu2 = np.sort([int(f.split(".")[-1]) for f in res_files])
if len(clu_files) != len(res_files) or not (clu1 == clu2).any():
print("Not the same number of clu and res files in "+path+"; Exiting ...")
sys.exit()
count = 0
spikes = []
basename = clu_files[0].split(".")[0]
for i, s in zip(range(len(clu_files)),clu1):
clu = np.genfromtxt(os.path.join(path,basename+'.clu.'+str(s)),dtype=np.int32)[1:]
if np.max(clu)>1:
# print(i,s)
res = np.genfromtxt(os.path.join(path,basename+'.res.'+str(s)))
tmp = np.unique(clu).astype(int)
idx_clu = tmp[tmp>1]
idx_col = np.arange(count, count+len(idx_clu))
tmp = pd.DataFrame(index = np.unique(res)/fs,
columns = pd.MultiIndex.from_product([[s],idx_col]),
data = 0,
dtype = np.uint16)
for j, k in zip(idx_clu, idx_col):
tmp.loc[res[clu==j]/fs,(s,k)] = np.uint16(k+1)
spikes.append(tmp)
count+=len(idx_clu)
# tmp2 = pd.DataFrame(index=res[clu==j]/fs, data = k+1, ))
# spikes = pd.concat([spikes, tmp2], axis = 1)
# Returning a dictionnary
toreturn = {}
shank = []
for s in spikes:
shank.append(s.columns.get_level_values(0).values)
sh = np.unique(shank[-1])[0]
for i,j in s:
toreturn[j] = nts.Ts(t=s[(i,j)].replace(0,np.nan).dropna().index.values, time_units = 's')
del spikes
shank = np.hstack(shank)
final_path = os.path.join(new_path, 'SpikeData.h5')
store = pd.HDFStore(final_path)
for s in toreturn.keys():
store.put('spikes/s'+str(s), toreturn[s].as_series())
store.put('shanks', pd.Series(index = list(toreturn.keys()), data = shank))
store.close()
# OLD WAY
# spikes = pd.concat(spikes, axis = 1)
# spikes = spikes.fillna(0)
# spikes = spikes.astype(np.uint16)
# Saving SpikeData.h5
# final_path = os.path.join(new_path, 'SpikeData.h5')
# spikes.columns.set_names(['shank', 'neuron'], inplace=True)
# spikes.to_hdf(final_path, key='spikes', mode='w')
# Returning a dictionnary
# toreturn = {}
# for i,j in spikes:
# toreturn[j] = nts.Ts(t=spikes[(i,j)].replace(0,np.nan).dropna().index.values, time_units = 's')
# shank = spikes.columns.get_level_values(0).values[:,np.newaxis].flatten()
return toreturn, shank
def loadXML(path):
"""
path should be the folder session containing the XML file
Function returns :
1. the number of channels
2. the sampling frequency of the dat file or the eeg file depending of what is present in the folder
eeg file first if both are present or both are absent
3. the mappings shanks to channels as a dict
Args:
path : string
Returns:
int, int, dict
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
listdir = os.listdir(path)
xmlfiles = [f for f in listdir if f.endswith('.xml')]
if not len(xmlfiles):
print("Folder contains no xml files; Exiting ...")
sys.exit()
new_path = os.path.join(path, xmlfiles[0])
from xml.dom import minidom
xmldoc = minidom.parse(new_path)
nChannels = xmldoc.getElementsByTagName('acquisitionSystem')[0].getElementsByTagName('nChannels')[0].firstChild.data
fs_dat = xmldoc.getElementsByTagName('acquisitionSystem')[0].getElementsByTagName('samplingRate')[0].firstChild.data
fs_eeg = xmldoc.getElementsByTagName('fieldPotentials')[0].getElementsByTagName('lfpSamplingRate')[0].firstChild.data
if os.path.splitext(xmlfiles[0])[0] +'.dat' in listdir:
fs = fs_dat
elif os.path.splitext(xmlfiles[0])[0] +'.eeg' in listdir:
fs = fs_eeg
else:
fs = fs_eeg
shank_to_channel = {}
groups = xmldoc.getElementsByTagName('anatomicalDescription')[0].getElementsByTagName('channelGroups')[0].getElementsByTagName('group')
for i in range(len(groups)):
shank_to_channel[i] = np.sort([int(child.firstChild.data) for child in groups[i].getElementsByTagName('channel')])
return int(nChannels), int(fs), shank_to_channel
def downsampleDatFile(path, n_channels, fs):
"""
downsample .dat file to .eeg 1/16 (20000 -> 1250 Hz)
Since .dat file can be very big, the strategy is to load one channel at the time,
downsample it, and free the memory.
Args:
path: string
n_channel: int
fs: int
Return:
none
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
listdir = os.listdir(path)
datfile = [f for f in listdir if f.endswith('.dat')]
if not len(datfile):
print("Folder contains no xml files; Exiting ...")
sys.exit()
new_path = os.path.join(path, datfile[0])
f = open(new_path, 'rb')
startoffile = f.seek(0, 0)
endoffile = f.seek(0, 2)
bytes_size = 2
n_samples = int((endoffile-startoffile)/n_channels/bytes_size)
duration = n_samples/fs
f.close()
chunksize = 100000
eeg = np.zeros((int(n_samples/16),n_channels))
for n in range(n_channels):
# Loading
rawchannel = np.zeros(n_samples, np.int16)
count = 0
while count < n_samples:
f = open(new_path, 'rb')
seekstart = count*n_channels*bytes_size
f.seek(seekstart)
block = np.fromfile(f, np.int16, n_channels*np.minimum(chunksize, n_samples-count))
f.close()
block = block.reshape(np.minimum(chunksize, n_samples-count), n_channels)
rawchannel[count:count+np.minimum(chunksize, n_samples-count)] = np.copy(block[:,n])
count += chunksize
# Downsampling
eeg[:,n] = scipy.signal.resample_poly(rawchannel, 1, 16)
del rawchannel
# Saving
eeg_path = os.path.join(path, os.path.splitext(datfile[0])[0]+'.eeg')
with open(eeg_path, 'wb') as f:
eeg.astype('int16').tofile(f)
return
def makeEpochs(path, order, file = None, start=None, end = None, time_units = 's'):
"""
The pre-processing pipeline should spit out a csv file containing all the successive epoch of sleep/wake
This function will load the csv and write neuroseries.IntervalSet of wake and sleep in /Analysis/BehavEpochs.h5
If no csv exists, it's still possible to give by hand the start and end of the epochs
Notes:
The function assumes no header on the csv file
Args:
path: string
order: list
file: string
start: list/array (optional)
end: list/array (optional)
time_units: string (optional)
Return:
none
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
if file:
listdir = os.listdir(path)
if file not in listdir:
print("The file "+file+" cannot be found in the path "+path)
sys.exit()
filepath = os.path.join(path, file)
epochs = pd.read_csv(filepath, header = None)
elif file is None and len(start) and len(end):
epochs = pd.DataFrame(np.vstack((start, end)).T)
elif file is None and start is None and end is None:
print("You have to specify either a file or arrays of start and end; Exiting ...")
sys.exit()
# Creating /Analysis/ Folder here if not already present
new_path = os.path.join(path, 'Analysis/')
if not os.path.exists(new_path): os.makedirs(new_path)
# Writing to BehavEpochs.h5
new_file = os.path.join(new_path, 'BehavEpochs.h5')
store = pd.HDFStore(new_file, 'a')
epoch = np.unique(order)
for i, n in enumerate(epoch):
idx = np.where(np.array(order) == n)[0]
ep = nts.IntervalSet(start = epochs.loc[idx,0],
end = epochs.loc[idx,1],
time_units = time_units)
store[n] = pd.DataFrame(ep)
store.close()
return None
def makePositions(path, file_order, episodes, n_ttl_channels = 1, optitrack_ch = None, names = ['ry', 'rx', 'rz', 'x', 'y', 'z'], update_wake_epoch = True):
"""
Assuming that makeEpochs has been runned and a file BehavEpochs.h5 can be
found in /Analysis/, this function will look into path for analogin file
containing the TTL pulses. The position time for all events will thus be
updated and saved in Analysis/Position.h5.
BehavEpochs.h5 will although be updated to match the time between optitrack
and intan
Notes:
The function assumes headers on the csv file of the position in the following order:
['ry', 'rx', 'rz', 'x', 'y', 'z']
Args:
path: string
file_order: list
names: list
Return:
None
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
files = os.listdir(path)
for f in file_order:
if not np.any([f+'.csv' in g for g in files]):
print("Could not find "+f+'.csv; Exiting ...')
sys.exit()
new_path = os.path.join(path, 'Analysis/')
if not os.path.exists(new_path): os.makedirs(new_path)
file_epoch = os.path.join(path, 'Analysis', 'BehavEpochs.h5')
if os.path.exists(file_epoch):
wake_ep = loadEpoch(path, 'wake')
else:
makeEpochs(path, episodes, file = 'Epoch_TS.csv')
wake_ep = loadEpoch(path, 'wake')
if len(wake_ep) != len(file_order):
print("Number of wake episodes doesn't match; Exiting...")
sys.exit()
frames = []
for i, f in enumerate(file_order):
csv_file = os.path.join(path, "".join(s for s in files if f+'.csv' in s))
position = pd.read_csv(csv_file, header = [4,5], index_col = 1)
if 1 in position.columns:
position = position.drop(labels = 1, axis = 1)
position = position[~position.index.duplicated(keep='first')]
analogin_file = os.path.splitext(csv_file)[0]+'_analogin.dat'
if not os.path.split(analogin_file)[1] in files:
print("No analogin.dat file found.")
print("Please provide it as "+os.path.split(analogin_file)[1])
print("Exiting ...")
sys.exit()
else:
ttl = loadTTLPulse(analogin_file, n_ttl_channels, optitrack_ch)
length = np.minimum(len(ttl), len(position))
ttl = ttl.iloc[0:length]
position = position.iloc[0:length]
time_offset = wake_ep.as_units('s').iloc[i,0] + ttl.index[0]
position.index += time_offset
wake_ep.iloc[i,0] = np.int64(np.maximum(wake_ep.as_units('s').iloc[i,0], position.index[0])*1e6)
wake_ep.iloc[i,1] = np.int64(np.minimum(wake_ep.as_units('s').iloc[i,1], position.index[-1])*1e6)
frames.append(position)
position = pd.concat(frames)
#position = nts.TsdFrame(t = position.index.values, d = position.values, time_units = 's', columns = names)
position.columns = names
position[['ry', 'rx', 'rz']] *= (np.pi/180)
position[['ry', 'rx', 'rz']] += 2*np.pi
position[['ry', 'rx', 'rz']] %= 2*np.pi
if update_wake_epoch:
store = pd.HDFStore(file_epoch, 'a')
store['wake'] = pd.DataFrame(wake_ep)
store.close()
position_file = os.path.join(path, 'Analysis', 'Position.h5')
store = pd.HDFStore(position_file, 'w')
store['position'] = position
store.close()
return
def loadEpoch(path, epoch, episodes = None):
"""
load the epoch contained in path
If the path contains a folder analysis, the function will load either the BehavEpochs.mat or the BehavEpochs.h5
Run makeEpochs(data_directory, ['sleep', 'wake', 'sleep', 'wake'], file='Epoch_TS.csv') to create the BehavEpochs.h5
Args:
path: string
epoch: string
Returns:
neuroseries.IntervalSet
"""
if not os.path.exists(path): # Check for path
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
filepath = os.path.join(path, 'Analysis')
if os.path.exists(filepath): # Check for path/Analysis/
listdir = os.listdir(filepath)
file = [f for f in listdir if 'BehavEpochs' in f]
if len(file) == 0: # Running makeEpochs
makeEpochs(path, episodes, file = 'Epoch_TS.csv')
listdir = os.listdir(filepath)
file = [f for f in listdir if 'BehavEpochs' in f]
if file[0] == 'BehavEpochs.h5':
new_file = os.path.join(filepath, 'BehavEpochs.h5')
store = pd.HDFStore(new_file, 'r')
if '/'+epoch in store.keys():
ep = store[epoch]
store.close()
return nts.IntervalSet(ep)
else:
print("The file BehavEpochs.h5 does not contain the key "+epoch+"; Exiting ...")
sys.exit()
elif file[0] == 'BehavEpochs.mat':
behepochs = scipy.io.loadmat(os.path.join(filepath,file[0]))
if epoch == 'wake':
wake_ep = np.hstack([behepochs['wakeEp'][0][0][1],behepochs['wakeEp'][0][0][2]])
return nts.IntervalSet(wake_ep[:,0], wake_ep[:,1], time_units = 's').drop_short_intervals(0.0)
elif epoch == 'sleep':
sleep_pre_ep, sleep_post_ep = [], []
if 'sleepPreEp' in behepochs.keys():
sleep_pre_ep = behepochs['sleepPreEp'][0][0]
sleep_pre_ep = np.hstack([sleep_pre_ep[1],sleep_pre_ep[2]])
sleep_pre_ep_index = behepochs['sleepPreEpIx'][0]
if 'sleepPostEp' in behepochs.keys():
sleep_post_ep = behepochs['sleepPostEp'][0][0]
sleep_post_ep = np.hstack([sleep_post_ep[1],sleep_post_ep[2]])
sleep_post_ep_index = behepochs['sleepPostEpIx'][0]
if len(sleep_pre_ep) and len(sleep_post_ep):
sleep_ep = np.vstack((sleep_pre_ep, sleep_post_ep))
elif len(sleep_pre_ep):
sleep_ep = sleep_pre_ep
elif len(sleep_post_ep):
sleep_ep = sleep_post_ep
return nts.IntervalSet(sleep_ep[:,0], sleep_ep[:,1], time_units = 's')
###################################
# WORKS ONLY FOR MATLAB FROM HERE #
###################################
elif epoch == 'sws':
sampling_freq = 1250
new_listdir = os.listdir(path)
for f in new_listdir:
if 'sts.SWS' in f:
sws = np.genfromtxt(os.path.join(path,f))/float(sampling_freq)
return nts.IntervalSet.drop_short_intervals(nts.IntervalSet(sws[:,0], sws[:,1], time_units = 's'), 0.0)
elif '-states.mat' in f:
sws = scipy.io.loadmat(os.path.join(path,f))['states'][0]
index = np.logical_or(sws == 2, sws == 3)*1.0
index = index[1:] - index[0:-1]
start = np.where(index == 1)[0]+1
stop = np.where(index == -1)[0]
return nts.IntervalSet.drop_short_intervals(nts.IntervalSet(start, stop, time_units = 's', expect_fix=True), 0.0)
elif epoch == 'rem':
sampling_freq = 1250
new_listdir = os.listdir(path)
for f in new_listdir:
if 'sts.REM' in f:
rem = np.genfromtxt(os.path.join(path,f))/float(sampling_freq)
return nts.IntervalSet(rem[:,0], rem[:,1], time_units = 's').drop_short_intervals(0.0)
elif '-states/m' in listdir:
rem = scipy.io.loadmat(path+f)['states'][0]
index = (rem == 5)*1.0
index = index[1:] - index[0:-1]
start = np.where(index == 1)[0]+1
stop = np.where(index == -1)[0]
return nts.IntervalSet(start, stop, time_units = 's', expect_fix=True).drop_short_intervals(0.0)
def loadPosition(path, events = None, episodes = None, n_ttl_channels = 1, optitrack_ch = None, names = ['ry', 'rx', 'rz', 'x', 'y', 'z'], update_wake_epoch = True):
"""
load the position contained in /Analysis/Position.h5
Notes:
The order of the columns is assumed to be
['ry', 'rx', 'rz', 'x', 'y', 'z']
Args:
path: string
Returns:
neuroseries.TsdFrame
"""
if not os.path.exists(path): # Checking for path
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
new_path = os.path.join(path, 'Analysis')
if not os.path.exists(new_path): os.mkdir(new_path)
file = os.path.join(path, 'Analysis', 'Position.h5')
if not os.path.exists(file):
makePositions(path, events, episodes, n_ttl_channels, optitrack_ch, names, update_wake_epoch)
if os.path.exists(file):
store = pd.HDFStore(file, 'r')
position = store['position']
store.close()
position = nts.TsdFrame(t = position.index.values, d = position.values, columns = position.columns, time_units = 's')
return position
else:
print("Cannot find "+file+" for loading position")
sys.exit()
def loadTTLPulse(file, n_ttl_channels = 1, optitrack_ch = None, fs = 20000):
"""
load ttl from analogin.dat
"""
f = open(file, 'rb')
startoffile = f.seek(0, 0)
endoffile = f.seek(0, 2)
bytes_size = 2
n_samples = int((endoffile-startoffile)/n_ttl_channels/bytes_size)
f.close()
with open(file, 'rb') as f:
data = np.fromfile(f, np.uint16).reshape((n_samples, n_ttl_channels))
if n_ttl_channels == 1:
data = data.flatten().astype(np.int32)
else:
data = data[:,optitrack_ch].flatten().astype(np.int32)
peaks,_ = scipy.signal.find_peaks(np.diff(data), height=30000)
timestep = np.arange(0, len(data))/fs
# analogin = pd.Series(index = timestep, data = data)
peaks+=1
ttl = pd.Series(index = timestep[peaks], data = data[peaks])
return ttl
##########################################################################################################
# TODO
##########################################################################################################
def loadShankStructure(generalinfo):
"""
load Shank Structure from dictionnary
Only useful for matlab now
Note :
TODO for raw data.
Args:
generalinfo : dict
Returns: dict
"""
shankStructure = {}
for k,i in zip(generalinfo['shankStructure'][0][0][0][0],range(len(generalinfo['shankStructure'][0][0][0][0]))):
if len(generalinfo['shankStructure'][0][0][1][0][i]):
shankStructure[k[0]] = generalinfo['shankStructure'][0][0][1][0][i][0]-1
else :
shankStructure[k[0]] = []
return shankStructure
def loadShankMapping(path):
spikedata = scipy.io.loadmat(path)
shank = spikedata['shank']
return shank
def loadHDCellInfo(path, index):
"""
load the session_id_HDCells.mat file that contains the index of the HD neurons
Only useful for matlab now
Note :
TODO for raw data.
Args:
generalinfo : string, array
Returns:
array
"""
# units shoud be the value to convert in s
import scipy.io
hd_info = scipy.io.loadmat(path)['hdCellStats'][:,-1]
return np.where(hd_info[index])[0]
def loadLFP(path, n_channels=90, channel=64, frequency=1250.0, precision='int16'):
import neuroseries as nts
if type(channel) is not list:
f = open(path, 'rb')
startoffile = f.seek(0, 0)
endoffile = f.seek(0, 2)
bytes_size = 2
n_samples = int((endoffile-startoffile)/n_channels/bytes_size)
duration = n_samples/frequency
interval = 1/frequency
f.close()
with open(path, 'rb') as f:
data = np.fromfile(f, np.int16).reshape((n_samples, n_channels))[:,channel]
timestep = np.arange(0, len(data))/frequency
return nts.Tsd(timestep, data, time_units = 's')
elif type(channel) is list:
f = open(path, 'rb')
startoffile = f.seek(0, 0)
endoffile = f.seek(0, 2)
bytes_size = 2
n_samples = int((endoffile-startoffile)/n_channels/bytes_size)
duration = n_samples/frequency
f.close()
with open(path, 'rb') as f:
data = np.fromfile(f, np.int16).reshape((n_samples, n_channels))[:,channel]
timestep = np.arange(0, len(data))/frequency
return nts.TsdFrame(timestep, data, time_units = 's')
def loadBunch_Of_LFP(path, start, stop, n_channels=90, channel=64, frequency=1250.0, precision='int16'):
import neuroseries as nts
bytes_size = 2
start_index = int(start*frequency*n_channels*bytes_size)
stop_index = int(stop*frequency*n_channels*bytes_size)
fp = np.memmap(path, np.int16, 'r', start_index, shape = (stop_index - start_index)//bytes_size)
data = np.array(fp).reshape(len(fp)//n_channels, n_channels)
if type(channel) is not list:
timestep = np.arange(0, len(data))/frequency
return nts.Tsd(timestep, data[:,channel], time_units = 's')
elif type(channel) is list:
timestep = np.arange(0, len(data))/frequency
return nts.TsdFrame(timestep, data[:,channel], time_units = 's')
def loadAuxiliary(path, n_probe = 1, fs = 20000):
"""
Extract the acceleration from the auxiliary.dat for each epochs
Downsampled at 100 Hz
Args:
path: string
epochs_ids: list
Return:
TsdArray
"""
if not os.path.exists(path):
print("The path "+path+" doesn't exist; Exiting ...")
sys.exit()
if 'Acceleration.h5' in os.listdir(os.path.join(path, 'Analysis')):
accel_file = os.path.join(path, 'Analysis', 'Acceleration.h5')
store = pd.HDFStore(accel_file, 'r')
accel = store['acceleration']
store.close()
accel = nap.TsdFrame(t = accel.index.values*1e6, d = accel.values)
return accel
else:
aux_files = np.sort([f for f in os.listdir(path) if 'auxiliary' in f])
if len(aux_files)==0:
print("Could not find "+f+'_auxiliary.dat; Exiting ...')
sys.exit()
accel = []
sample_size = []
for i, f in enumerate(aux_files):
new_path = os.path.join(path, f)
f = open(new_path, 'rb')
startoffile = f.seek(0, 0)
endoffile = f.seek(0, 2)
bytes_size = 2
n_samples = int((endoffile-startoffile)/(3*n_probe)/bytes_size)
duration = n_samples/fs
f.close()
tmp = np.fromfile(open(new_path, 'rb'), np.uint16).reshape(n_samples,3*n_probe)
accel.append(tmp)
sample_size.append(n_samples)
del tmp
accel = np.concatenate(accel)
factor = 37.4e-6
# timestep = np.arange(0, len(accel))/fs
# accel = pd.DataFrame(index = timestep, data= accel*37.4e-6)
tmp = []
for i in range(accel.shape[1]):
tmp.append(scipy.signal.resample_poly(accel[:,i]*factor, 1, 100))
tmp = np.vstack(tmp).T
timestep = np.arange(0, len(tmp))/(fs/100)
tmp = pd.DataFrame(index = timestep, data = tmp)
# accel_file = os.path.join(path, 'Analysis', 'Acceleration.h5')
# store = pd.HDFStore(accel_file, 'w')
# store['acceleration'] = tmp
# store.close()
accel = nap.TsdFrame(t = tmp.index.values, d = tmp.values,time_units = 's')
return accel
def loadUpDown(path):
import neuroseries as nts
import os
name = path.split("/")[-1]
files = os.listdir(path)
if name + '.evt.py.dow' in files:
tmp = np.genfromtxt(path+'/'+name+'.evt.py.dow')[:,0]
tmp = tmp.reshape(len(tmp)//2,2)/1000
down_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's')
if name + '.evt.py.upp' in files:
tmp = np.genfromtxt(path+'/'+name+'.evt.py.upp')[:,0]
tmp = tmp.reshape(len(tmp)//2,2)/1000
up_ep = nts.IntervalSet(start = tmp[:,0], end = tmp[:,1], time_units = 's')
return (down_ep, up_ep)