-
Notifications
You must be signed in to change notification settings - Fork 1
/
peak2equilibrium_RSC.py
174 lines (129 loc) · 6.22 KB
/
peak2equilibrium_RSC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 16 15:58:14 2022
@author: dhruv
"""
import numpy as np
import pandas as pd
import scipy.io
import pynapple as nap
import os, sys
import time
import matplotlib.pyplot as plt
from scipy.stats import kendalltau, pearsonr, wilcoxon, mannwhitneyu
import seaborn as sns
#%%
#On Nibelungen
data_directory = '/media/dhruv/LaCie1/A7800'
datasets = np.genfromtxt(os.path.join(data_directory,'dataset_DM.list'), delimiter = '\n', dtype = str, comments = '#')
allPETH = pd.DataFrame()
peak_above_mean = []
uponset_rsc = []
corrs = []
pvals = []
for s in datasets:
print(s)
name = s.split('/')[-1]
path = os.path.join(data_directory, s)
data = nap.load_session(path, 'neurosuite')
data.load_neurosuite_xml(path)
channelorder = data.group_to_channel[0]
spikes = data.spikes
epochs = data.epochs
# ###############################################################################################
# # LOAD UP AND DOWN STATE, NEW SWS AND NEW WAKE EPOCHS
# ###############################################################################################
file = os.path.join(path, name +'.sws.evt')
new_sws_ep = data.read_neuroscope_intervals(name = 'SWS', path2file = file)
file = os.path.join(path, name +'.evt.py.dow')
down_ep = data.read_neuroscope_intervals(name = 'DOWN', path2file = file)
file = os.path.join(path, name +'.evt.py.upp')
up_ep = data.read_neuroscope_intervals(name = 'UP', path2file = file)
#%%
###############################################################################################
# COMPUTE EVENT CROSS CORRS
###############################################################################################
## Peak firing
cc2 = nap.compute_eventcorrelogram(spikes, nap.Tsd(up_ep['start'].values), binsize = 0.005, windowsize = 0.255, ep = up_ep, norm = True)
tmp = pd.DataFrame(cc2)
tmp = tmp.rolling(window=8, win_type='gaussian',center=True,min_periods=1).mean(std = 2)
dd2 = tmp[0:0.155]
if len(dd2.columns) > 0:
indexplot = []
peaks_keeping = []
for i in range(len(dd2.columns)):
a = np.where(dd2.iloc[:,i] > 0.5)
if len(a[0]) > 0:
peaks_keeping.append(dd2.iloc[:,i].max())
peak_above_mean.append(dd2.iloc[:,i].max())
res = dd2.iloc[:,i].index[a]
indexplot.append(res[0])
uponset_rsc.append(res[0])
corr, p = kendalltau(indexplot, peaks_keeping)
corrs.append(corr)
pvals.append(p)
plt.figure()
plt.rc('font', size = 15)
plt.title('Peak/ mean FR v/s UP onset')
plt.scatter(indexplot,peaks_keeping, label = 'R = ' + str((round(corr,2))), color = 'cornflowerblue')
plt.xlabel('Time from UP onset (s)')
plt.ylabel('Peak/mean FR')
plt.legend(loc = 'upper right')
#%% Pooled plot
binsize = 0.005
pooledcorr, pooledp = kendalltau(uponset_rsc, peak_above_mean)
(counts,onsetbins,peakbins) = np.histogram2d(uponset_rsc,peak_above_mean,bins = [len(np.arange(0,0.155,binsize))+1,len(np.arange(0,0.155,binsize))+1],
range=[[-0.0025,0.1575],[0.5,3.6]])
masked_array = np.ma.masked_where(counts == 0, counts)
cmap = plt.cm.viridis # Can be any colormap that you want after the cm
cmap.set_bad(color='white')
plt.figure()
plt.imshow(masked_array.T, origin='lower', extent = [onsetbins[0],onsetbins[-1],peakbins[0],peakbins[-1]],
aspect='auto', cmap = cmap)
plt.colorbar(ticks = [min(counts.flatten()),max(counts.flatten())])
plt.xlabel('UP onset delay (s)')
plt.ylabel('Peak-mean rate ratio')
plt.gca().set_box_aspect(1)
y_est = np.zeros(len(uponset_rsc))
m, b = np.polyfit(uponset_rsc, peak_above_mean, 1)
for i in range(len(uponset_rsc)):
y_est[i] = m*uponset_rsc[i]
plt.plot(uponset_rsc, y_est + b, color = 'r')
plt.figure()
plt.rc('font', size = 15)
plt.title('Peak/ mean FR v/s UP onset: RSC pooled data')
sns.kdeplot(x = uponset_rsc, y = peak_above_mean, color = 'cornflowerblue')
plt.scatter(uponset_rsc, peak_above_mean, label = 'R = ' + str((round(pooledcorr,2))), color = 'cornflowerblue', s = 4)
plt.xlabel('Time from UP onset (s)')
plt.ylabel('Peak/mean FR')
plt.legend(loc = 'upper right')
#%%
summary = pd.DataFrame()
summary['corr'] = corrs
summary['p'] = pvals
# summary['depthcorr'] = depthcorrs
# summary['depthp'] = depthpvals
plt.figure()
plt.boxplot(corrs, positions=[0], showfliers=False, patch_artist=True, boxprops=dict(facecolor='royalblue', color='royalblue'),
capprops=dict(color='royalblue'),
whiskerprops=dict(color='royalblue'),
medianprops=dict(color='white', linewidth = 2))
# plt.boxplot(depthcorrs, positions=[0.3], showfliers=False, patch_artist=True, boxprops=dict(facecolor='lightsteelblue', color='lightsteelblue'),
# capprops=dict(color='lightsteelblue'),
# whiskerprops=dict(color='lightsteelblue'),
# medianprops=dict(color='white', linewidth = 2))
x1 = np.random.normal(0, 0.01, size=len(summary['corr'][summary['p'] < 0.05]))
x2 = np.random.normal(0, 0.01, size=len(summary['corr'][summary['p'] >= 0.05]))
# x3 = np.random.normal(0.3, 0.01, size=len(summary['depthcorr'][summary['depthp'] < 0.05]))
# x4 = np.random.normal(0.3, 0.01, size=len(summary['depthcorr'][summary['depthp'] >= 0.05]))
plt.plot(x1, summary['corr'][summary['p'] < 0.05], 'x', color = 'k', fillstyle = 'none', markersize = 6, zorder =3, label = 'p < 0.05')
plt.plot(x2, summary['corr'][summary['p'] >= 0.05], '.', color = 'k', fillstyle = 'none', markersize = 6, zorder =3, label = 'p >= 0.05')
# plt.plot(x3, summary['depthcorr'][summary['depthp'] < 0.05], 'x', color = 'k', fillstyle = 'none', markersize = 6, zorder =3)
# plt.plot(x4, summary['depthcorr'][summary['depthp'] >= 0.05], '.', color = 'k', fillstyle = 'none', markersize = 6, zorder =3)
# plt.axhline(0, color = 'silver')
# plt.xticks([0, 0.3],['vs delay', 'vs depth'])
plt.xticks([])
# plt.title('Peak/mean FR v/s UP onset - Summary')
plt.legend(loc = 'upper right')
plt.ylabel('Peak/mean v/s UP onset (R)')