-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
186 lines (138 loc) · 6.62 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from numpy import ceil, float16
from numpy.lib.function_base import quantile
import cv2
import numpy as np
def kuwahara_filter(image, win_size):
"""
Kuwahara filter implementation using HSV color space
"""
quadrant_size = int(ceil(win_size/2))
img = image.copy()
clamp_y = lambda y1, y2: (max(0, min(y1, img.shape[0]-1)), min(y2,img.shape[0]-1))
clamp_x = lambda x1, x2: (max(0, min(x1, img.shape[1]-1)), min(x2,img.shape[1]-1))
for y in range(image.shape[0]):
for x in range(image.shape[1]):
# find the top left corner of the filter on image
tl_x = x - int(win_size/2)
tl_y = y - int(win_size/2)
# find the quarters of the image
q1 = [clamp_y(tl_y, tl_y + quadrant_size), clamp_x(tl_x, tl_x + quadrant_size)]
q2 = [clamp_y(tl_y, tl_y + quadrant_size), clamp_x(tl_x, tl_x + quadrant_size)]
q3 = [clamp_y(tl_y + quadrant_size, tl_y + win_size), clamp_x(tl_x, tl_x + quadrant_size)]
q4 = [clamp_y(tl_y+ quadrant_size, tl_y + win_size), clamp_x(tl_x + quadrant_size, tl_x + win_size)]
std_1 = image[q1[0][0]:q1[0][1], q1[1][0]:q1[1][1],2].std()
std_2 = image[q2[0][0]:q2[0][1], q2[1][0]:q2[1][1],2].std()
std_3 = image[q3[0][0]:q3[0][1], q3[1][0]:q3[1][1],2].std()
std_4 = image[q4[0][0]:q4[0][1], q4[1][0]:q4[1][1],2].std()
quads = [q1, q2, q3, q4]
min_std = np.argmin([std_1, std_2, std_3, std_4])
selected_quad = quads[min_std]
if selected_quad[0][0] != selected_quad[0][1] and selected_quad[1][0] != selected_quad[1][1]:
new_pixel_val = image[selected_quad[0][0]:selected_quad[0][1], selected_quad[1][0]:selected_quad[1][1],2].mean()
img[y,x,2] = new_pixel_val
return img
def gaussian_formula(x,y,sigma):
from sklearn.preprocessing import normalize
result = (1/(2*np.pi*(sigma**2)))*np.exp(-(x**2+y**2)/(2*(sigma**2)))
# normalize the kernel to avoid cut off with
# large sigma values
return result/result.sum()
def gaussian_filter(image, filter_size, sigma=1):
"""
Gaussian filter implementation using HSV color space
"""
from itertools import product
img = image[:,:,2]
center = filter_size//2
x,y = np.mgrid[0-center:filter_size-center, 0-center:filter_size-center]
filter_ = gaussian_formula(x,y,sigma)
# calculate the resulting image size
# after applying gaussian filter, y coordinate
new_img_height = image.shape[0] - filter_size + 1
new_img_width = image.shape[1] - filter_size + 1
# stack all possible windows in the image vertically
# to apply the filter later on
new_image = np.empty((new_img_height*new_img_width, filter_size**2))
row = 0
for i,j in product(range(new_img_height), range(new_img_width)):
new_image[row,:] = np.ravel(img[i:i+filter_size, j:j+filter_size])
row += 1
filter_ = np.ravel(filter_)
filtered_image = np.dot(new_image, filter_).reshape(new_img_height, new_img_width).astype(np.uint8)
image[center:new_img_height+center,center:new_img_width+center,2] = filtered_image
return image
def mean_filter(image, filter_size):
from itertools import product
# new image's dimensions since
# the border values are discarded
new_img_height = image.shape[0] - filter_size + 1
new_img_width = image.shape[1] - filter_size + 1
# store each window in numpy array to
# average them at once to obtain the
# new pixel values
# preserve color channels
windows = np.empty((new_img_height*new_img_width, filter_size**2, 3))
row = 0
# store each window in "windows" as the filter
# traces the image
for i,j in product(range(new_img_height), range(new_img_width)):
# simply, all pixels under the filter side to side
# with their RGB channels
windows[row,:,:] = np.ravel(image[i:i+filter_size, j:j+filter_size]).reshape(-1,3)
row += 1
filtered_image =np.empty((new_img_height*new_img_width,3))
# calculate the mean for RGB values seperately for each window
for r in range(new_img_height*new_img_width):
filtered_image[r,:] = windows[r,:,:].mean(axis=0)
# after calculating the means for each channel and row
# in windows, reshape the array to obtain resultant
# image with RGB channels
filtered_image = filtered_image.reshape(new_img_height, new_img_width, 3).astype(np.uint8)
return filtered_image
def filter_(image, filter_name, filter_size, sigma):
import matplotlib.pyplot as plt
filtered_image = np.empty((1,1))
if filter_name == "mean":
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
filtered_image = mean_filter(image, filter_size)
elif filter_name == "gaussian":
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
filtered_image = gaussian_filter(image, filter_size, sigma)
filtered_image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB)
elif filter_name == "kuwahara":
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
#image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
filtered_image = kuwahara_filter(image, filter_size)
filtered_image = cv2.cvtColor(filtered_image, cv2.COLOR_HSV2RGB)
# plot the image
plt.imshow(filtered_image)
plt.show()
def get_image(image_path):
# Read the image - Notice that OpenCV reads the images as BRG instead of RGB
return cv2.imread(image_path)
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Apply filters to images')
parser.add_argument("--image", default="sample_image.jpg",
metavar="path/to/image",
help="'image path'")
parser.add_argument("--filter",required=True,
help="'Filter name: mean, gaussian or kuwahara'")
parser.add_argument("--size",
default=5,
metavar="5",
help="'Filter size. Must be an odd number. Default value is 5")
parser.add_argument("--sigma",
default=1,
help="'Sigma value for Gaussian filter. Default is 1")
# parse arguments
args = parser.parse_args()
# get filter name
filter_name = args.filter
if filter_name != "mean" and filter_name != "gaussian" and filter_name != "kuwahara":
raise ValueError("Please enter a valid filter name")
if int(args.size)%2 == 0:
raise ValueError("Please enter an odd number")
filter_(get_image(args.image), filter_name, int(args.size), int(args.sigma))