-
Notifications
You must be signed in to change notification settings - Fork 42
/
perturbk.m
executable file
·254 lines (194 loc) · 7.55 KB
/
perturbk.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
% PERTURBK - Perturbs the current solution to the solution valid for the
% given kernel parameter.
%
% Syntax: [a,b,g,ind,X_mer,y_mer,Rs,Q] = perturbk(scale)
%
% a: alpha coefficients
% b: bias
% g: partial derivatives of cost function w.r.t. alpha coefficients
% ind: cell array containing indices of margin, error and reserve vectors
% ind{1}: indices of margin vectors
% ind{2}: indices of error vectors
% ind{3}: indices of reserve vectors
% X_mer: matrix of margin, error and reserve vectors stored columnwise
% y_mer: column vector of class labels (-1/+1) for margin, error and reserve vectors
% Rs: inverse of extended kernel matrix for margin vectors
% Q: extended kernel matrix for all vectors
% scale: kernel scale
%
% Version 3.22e -- Comments to diehl@alumni.cmu.edu
%
function [a,b,g,ind,X,y,Rs,Q] = perturbk(new_scale)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global num_unlearned; % number of unlearned vectors initially
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
kernel_evals_begin = kevals;
num_examples = size(X,2);
% sum{k in U} Qik lambda k and sum{k in U} yk lambda k
SQl = zeros(num_examples,1);
Syl = 0;
% adjust kernel scale
scale = new_scale;
% recompute g for the margin, error and reserve vectors
inda = [ind{MARGIN} ind{ERROR} ind{RESERVE}];
[f,K] = svmeval(X(:,inda));
g(inda) = y(inda).*f + a(inda)*deps - 1;
% identify the unlearned vectors and compute their coefficient sensitivities
lambda = zeros(num_examples,1);
% find all error vectors with g >= 0
flag = (g(ind{ERROR}) >= 0);
i = find(flag);
if (length(i) > 0)
% relabel error vectors with g >= 0 as unlearned
ind{UNLEARNED} = [ind{UNLEARNED} ind{ERROR}(i)];
% coefficient sensitivities
lambda(ind{ERROR}(i)) = -a(ind{ERROR}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{ERROR}(i))*y(inda)').*K(length(ind{MARGIN})+i,:))'*lambda(ind{ERROR}(i));
Syl = Syl + y(ind{ERROR}(i))'*lambda(ind{ERROR}(i));
% keep remaining error vectors labeled as such
ind{ERROR}(i) = [];
end;
% find all reserve vectors with g <= 0
flag = (g(ind{RESERVE}) <= 0);
i = find(flag);
if (length(i) > 0)
% relabel reserve vectors with g <= 0 as unlabeled
ind{UNLEARNED} = [ind{UNLEARNED} ind{RESERVE}(i)];
% coefficient sensitivities
lambda(ind{RESERVE}(i)) = C(ind{RESERVE}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(inda)*y(ind{RESERVE}(i))').*kernel(X(:,inda),X(:,ind{RESERVE}(i)),type,scale))*lambda(ind{RESERVE}(i));
Syl = Syl + y(ind{RESERVE}(i))'*lambda(ind{RESERVE}(i));
% keep remaining reserve vectors labeled as such
ind{RESERVE}(i) = [];
end;
% find all margin vectors with g > 0
flag = (g(ind{MARGIN}) > 0);
i = find(flag);
if (length(i) > 0)
% coefficient sensitivities
lambda(ind{MARGIN}(i)) = -a(ind{MARGIN}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{MARGIN}(i))*y(inda)').*K(i,:))'*lambda(ind{MARGIN}(i));
Syl = Syl + y(ind{MARGIN}(i))'*lambda(ind{MARGIN}(i));
end;
% find all margin vectors with g <= 0
flag = ~flag;
i = find(flag);
if (length(i) > 0)
% coefficient sensitivities
lambda(ind{MARGIN}(i)) = C(ind{MARGIN}(i))-a(ind{MARGIN}(i));
% update sums
SQl(inda) = SQl(inda) + ((y(ind{MARGIN}(i))*y(inda)').*K(i,:))'*lambda(ind{MARGIN}(i));
Syl = Syl + y(ind{MARGIN}(i))'*lambda(ind{MARGIN}(i));
end;
% relabel margin vectors as unlearned
ind{UNLEARNED} = [ind{UNLEARNED} ind{MARGIN}];
ind{MARGIN} = [];
% add jitter factor
SQl(ind{UNLEARNED}) = SQl(ind{UNLEARNED}) + deps*lambda(ind{UNLEARNED});
% number of unlearned vectors initially
num_unlearned = length(ind{UNLEARNED});
s = sprintf('Number of unlearned vectors: %d',num_unlearned);
disp(s);
% reset Q and Rs
Q = Q(1,:);
Rs = Inf;
p_s = 0;
num_MVs = length(ind{MARGIN});
num_learned = 0;
perturbations = 0;
while ((length(ind{UNLEARNED}) > 0) | ((p_s < 1) & (length(ind{UNLEARNED}) == 0)))
perturbations = perturbations + 1;
% compute beta and gamma
if (num_MVs > 0)
v = zeros(num_MVs+1,1);
if (p_s < 1-eps)
v(1) = -Syl - sum(y.*a)/(1-p_s);
else
v(1) = -Syl;
end;
v(2:num_MVs+1) = -SQl(ind{MARGIN});
beta = Rs*v;
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} ind{UNLEARNED}];
gamma(ind_temp) = Q(:,ind_temp)'*beta + SQl(ind_temp);
else
beta = 0;
gamma = SQl;
end;
% minimum acceptable parameter change
[min_dps,indss,cstatus,nstatus] = min_delta_p_s(p_s,gamma,beta,lambda);
% update a, b, g and p_s
if (length(ind{UNLEARNED}) > 0)
a(ind{UNLEARNED}) = a(ind{UNLEARNED}) + lambda(ind{UNLEARNED})*min_dps;
end;
if (num_MVs > 0)
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_dps;
end;
b = b + beta(1)*min_dps;
g = g + gamma*min_dps;
p_s = p_s + min_dps;
% perform bookkeeping
indco = bookkeeping(indss,cstatus,nstatus);
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
% update SQl and Syl when the current status of indss is UNLEARNED
if (cstatus == UNLEARNED)
num_learned = num_learned + 1;
if (nstatus == MARGIN)
SQl = SQl - Q(num_MVs+1,:)'*lambda(indss);
else
SQl = SQl - ((y*y(indss)).*kernel(X,X(:,indss),type,scale))*lambda(indss);
SQl(indss) = SQl(indss) - deps*lambda(indss);
end;
Syl = Syl - y(indss)*lambda(indss);
if (mod(num_learned,50) == 0)
s = sprintf('Learned %d examples.',num_learned);
disp(s);
end;
end;
end;
disp('Perturbation complete!');
% summary statistics
s = sprintf('\nMargin vectors:\t\t%d',length(ind{MARGIN}));
disp(s);
s = sprintf('Error vectors:\t\t%d',length(ind{ERROR}));
disp(s);
s = sprintf('Reserve vectors:\t%d',length(ind{RESERVE}));
disp(s);
s = sprintf('Kernel evaluations:\t%d\n',-kernel_evals_begin+kevals);
disp(s);