-
Notifications
You must be signed in to change notification settings - Fork 0
/
run10dayFCAST.py
260 lines (169 loc) · 8.18 KB
/
run10dayFCAST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import pandas as pd
import numpy as np
import math
from scipy.stats import binom
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import LassoLarsIC
from sklearn.linear_model import Lars
from sklearn.linear_model import ElasticNet
import pprint
# data is most recent at top
rawdf = pd.read_csv('NDVA_VGT_Oct31_2024.csv',sep='\t')
print(rawdf)
# dates cause confusion in automated computations so drop them
# we can reference rawdf for dates
prices = rawdf.drop(['Date', 'Date.1'], axis = 1)
print(prices)
returnsDf = prices.pct_change(periods = -1)
print(returnsDf)
# try 150 window / 50 pts in reg
fwdRtnDaysCumulative = 10 # forward return days cumulative S6
pushDownRegressionBackInTime = 1 # Excel S9... rolling window macro (routine) will modify this
nPointsToBacktest = 42 # 504 # Excel S15
def tailRatio(a, lower, upper):
quantiles = np.quantile(a, [lower, upper])
#print(quantiles)
ratio = quantiles[1]/abs(quantiles[0])
#print(ratio)
return ratio
# test
# tailRatio([1,2,3,4,5,6,7,8,9,10], .2, .8)
momentWindowSizeNominal = 150 # window size for stat computation S3
nPointsInRegressionNominal = 50
def oneBacktest(momentWindowSize, nPointsInRegression, alpha):
# data prep
# compute rolling moments for both assets
rollingMean = returnsDf.rolling(momentWindowSize).mean().shift(-(momentWindowSize-1))
rollingStdev = returnsDf.rolling(momentWindowSize).std().shift(-(momentWindowSize-1))
rollingSkew = returnsDf.rolling(momentWindowSize).skew().shift(-(momentWindowSize-1))
rollingKurt = returnsDf.rolling(momentWindowSize).kurt().shift(-(momentWindowSize-1))
rolling9505 = returnsDf.rolling(momentWindowSize).apply(lambda a: tailRatio(a, 0.05, 0.95)).shift(-(momentWindowSize-1))
rolling7525 = returnsDf.rolling(momentWindowSize).apply(lambda a: tailRatio(a, 0.25, 0.75)).shift(-(momentWindowSize-1))
# print(rolling7525)
NVDAclosertnPlus1 = returnsDf['NVDAClose'] + 1
print(NVDAclosertnPlus1)
rollingCumulativeReturnOver_Y = NVDAclosertnPlus1.rolling(fwdRtnDaysCumulative).apply(lambda a: math.prod(a)).shift(-(fwdRtnDaysCumulative-1))
print(rollingCumulativeReturnOver_Y)
targetCol = 'NVDAClose'
boostCol = 'VGTClose'
# columns G to R in sheet
Xa = [rollingMean[targetCol].tolist(),
rollingStdev[targetCol].tolist(),
rollingSkew[targetCol].tolist(),
rollingKurt[targetCol].tolist(),
rolling9505[targetCol].tolist(),
rolling7525[targetCol].tolist(),
rollingMean[boostCol].tolist(),
rollingStdev[boostCol].tolist(),
rollingSkew[boostCol].tolist(),
rollingKurt[boostCol].tolist(),
rolling9505[boostCol].tolist(),
rolling7525[boostCol].tolist()
]
X = np.transpose(np.array(Xa))
#(12, 5182) untransposed
print(X.shape)
nDayAheadBacktestResults = []
R2AdjBacktestResults = []
for i in range(nPointsToBacktest):
pushDownRegressionBackInTime = i
subX = X[(pushDownRegressionBackInTime+fwdRtnDaysCumulative):(pushDownRegressionBackInTime+fwdRtnDaysCumulative+nPointsInRegression), :]
subY = rollingCumulativeReturnOver_Y[(pushDownRegressionBackInTime+0):(pushDownRegressionBackInTime+nPointsInRegression)]
print("subY shape")
print(subY.shape)
# use to get same results as Excel LINEST model
#reg = LinearRegression().fit(subX, subY)
#reg = ElasticNet().fit(subX, subY)
#reg = LassoLarsIC(criterion='bic').fit(subX, subY)
# slight tuning via alpha
# smaller alpha = keep more variables in the model
# larger alpha = weed out weaker contributing variables
# default of alpha = 1 just yields constant function most of the time
# (all coefficients zero except for constant)
reg = Lasso(alpha=alpha).fit(subX, subY)
R2 = reg.score(subX, subY)
print(R2)
#print("coeff")
print("coeff", reg.coef_)
nonzeroCount = np.count_nonzero(np.array(reg.coef_))
#print("reg.coef_ len", len(reg.coef_), nonzeroCount)
R2Adj = 1 - (1-R2)*(nPointsInRegression - 1)/(nPointsInRegression - (nonzeroCount+1) - 1)
print("R2Adj", R2Adj)
R2AdjBacktestResults.append(R2Adj)
#print("intercept")
#print(reg.intercept_)
fit_cumulativeReturnOver_Yhat = reg.predict(subX)
print("fit_cumulativeReturnOver_Yhat")
print(fit_cumulativeReturnOver_Yhat)
fit_cumulativeReturnOver_Yhat = reg.predict(subX)
# col BM
topOfX = X[0:i+1, :]
trueForecastNotAlignedByTime = reg.predict(topOfX)
print("col BM")
print(trueForecastNotAlignedByTime)
nDayAheadBacktestResults.append(trueForecastNotAlignedByTime[pushDownRegressionBackInTime])
#print("nDayAheadBacktestResults")
#print(nDayAheadBacktestResults)
print(type(rollingCumulativeReturnOver_Y))
rollingCumulativeReturnOver_Y_list = rollingCumulativeReturnOver_Y.to_list()
manualShiftActualBackInTime = ([0] * fwdRtnDaysCumulative) + rollingCumulativeReturnOver_Y_list
print("manualShiftActualBackInTime")
print(manualShiftActualBackInTime)
ztol = 0.000
ztolScanResults = []
while ztol < 0.03:
ztol += 0.001
correctDir = [] # BQ
outsideZtol = []
print("comparo ztol", ztol)
for i in range(nPointsToBacktest):
print(nDayAheadBacktestResults[i], manualShiftActualBackInTime[i])
if i > (fwdRtnDaysCumulative-1) :
if (nDayAheadBacktestResults[i] > 1 and manualShiftActualBackInTime[i] > 1) or (nDayAheadBacktestResults[i] < 1 and manualShiftActualBackInTime[i] < 1):
correctDir.append(1)
else:
correctDir.append(0)
if abs(nDayAheadBacktestResults[i] - 1) > ztol:
outsideZtol.append(1)
else:
outsideZtol.append(0)
print("correctDir analysis")
print("outsideZtol = ", sum(outsideZtol))
correctDirAndOutsideZtol = np.logical_and(np.array(correctDir), np.array(outsideZtol))
print("correctDirAndOutsideZtol = ", sum(correctDirAndOutsideZtol))
ztolRatio = sum(correctDirAndOutsideZtol)/sum(outsideZtol)
print("percentCorrect ztolRatio", ztolRatio)
binomdistZtol = binom.cdf(sum(correctDirAndOutsideZtol), sum(outsideZtol), 0.5)
print("binomdist ztol", binomdistZtol)
print(sum(correctDir), " / ", (nPointsToBacktest - fwdRtnDaysCumulative))
print("percentCorrect ", sum(correctDir) / (nPointsToBacktest - fwdRtnDaysCumulative))
print("binomdist all", binom.cdf(sum(correctDir), (nPointsToBacktest - fwdRtnDaysCumulative), 0.5))
ztolScanResults.append({
'ztol': ztol,
'percCorrectZtol': ztolRatio,
'binomdistZtol': binomdistZtol,
'nPointsInRegression': nPointsInRegression,
'momentWindowSize': momentWindowSize,
'alpha': alpha,
'meanR2Adj': sum(R2AdjBacktestResults) / len(R2AdjBacktestResults),
'lower05R2Adj': np.quantile(R2AdjBacktestResults, 0.05),
'mid50R2Adj': np.quantile(R2AdjBacktestResults, 0.75) - np.quantile(R2AdjBacktestResults, 0.25)
})
print("ztolScanResults")
pprint.pp(ztolScanResults)
ztolScanResults.sort(key=lambda x: x['binomdistZtol'], reverse=True)
print("best significance", ztolScanResults[0])
#pprint.pp(ztolScanResults[0])
# full factorial parameter scan
if False:
for nPointsInRegressionNominal in [30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170]:
for momentWindowSizeNominal in [120, 130, 140, 150, 160, 170, 180]:
for alphaNominal in [0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.0010]:
oneBacktest(momentWindowSizeNominal, nPointsInRegressionNominal, alphaNominal)
# one hyperparam value (for forward forecast)
if True:
for nPointsInRegressionNominal in [30]:
for momentWindowSizeNominal in [150]:
for alphaNominal in [0.0003]:
oneBacktest(momentWindowSizeNominal, nPointsInRegressionNominal, alphaNominal)