-
Notifications
You must be signed in to change notification settings - Fork 4
/
bezmisc.py
288 lines (258 loc) · 9.14 KB
/
bezmisc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
'''
Copyright (C) 2010 Nick Drobchenko, nick@cnc-club.ru
Copyright (C) 2005 Aaron Spike, aaron@ekips.org
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
'''
import math, cmath
def rootWrapper(a,b,c,d):
if a:
# Monics formula see http://en.wikipedia.org/wiki/Cubic_function#Monic_formula_of_roots
a,b,c = (b/a, c/a, d/a)
m = 2.0*a**3 - 9.0*a*b + 27.0*c
k = a**2 - 3.0*b
n = m**2 - 4.0*k**3
w1 = -.5 + .5*cmath.sqrt(-3.0)
w2 = -.5 - .5*cmath.sqrt(-3.0)
if n < 0:
m1 = pow(complex((m+cmath.sqrt(n))/2),1./3)
n1 = pow(complex((m-cmath.sqrt(n))/2),1./3)
else:
if m+math.sqrt(n) < 0:
m1 = -pow(-(m+math.sqrt(n))/2,1./3)
else:
m1 = pow((m+math.sqrt(n))/2,1./3)
if m-math.sqrt(n) < 0:
n1 = -pow(-(m-math.sqrt(n))/2,1./3)
else:
n1 = pow((m-math.sqrt(n))/2,1./3)
x1 = -1./3 * (a + m1 + n1)
x2 = -1./3 * (a + w1*m1 + w2*n1)
x3 = -1./3 * (a + w2*m1 + w1*n1)
return (x1,x2,x3)
elif b:
det=c**2.0-4.0*b*d
if det:
return (-c+cmath.sqrt(det))/(2.0*b),(-c-cmath.sqrt(det))/(2.0*b)
else:
return -c/(2.0*b),
elif c:
return 1.0*(-d/c),
return ()
def bezierparameterize(xxx_todo_changeme):
#parametric bezier
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme
x0=bx0
y0=by0
cx=3*(bx1-x0)
bx=3*(bx2-bx1)-cx
ax=bx3-x0-cx-bx
cy=3*(by1-y0)
by=3*(by2-by1)-cy
ay=by3-y0-cy-by
return ax,ay,bx,by,cx,cy,x0,y0
#ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
def linebezierintersect(xxx_todo_changeme1, xxx_todo_changeme2):
#parametric line
((lx1,ly1),(lx2,ly2)) = xxx_todo_changeme1
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme2
dd=lx1
cc=lx2-lx1
bb=ly1
aa=ly2-ly1
if aa:
coef1=cc/aa
coef2=1
else:
coef1=1
coef2=aa/cc
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#cubic intersection coefficients
a=coef1*ay-coef2*ax
b=coef1*by-coef2*bx
c=coef1*cy-coef2*cx
d=coef1*(y0-bb)-coef2*(x0-dd)
roots = rootWrapper(a,b,c,d)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(bezierpointatt(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)),i))
return retval
def bezierpointatt(xxx_todo_changeme3,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme3
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
x=ax*(t**3)+bx*(t**2)+cx*t+x0
y=ay*(t**3)+by*(t**2)+cy*t+y0
return x,y
def bezierslopeatt(xxx_todo_changeme4,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme4
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
dx=3*ax*(t**2)+2*bx*t+cx
dy=3*ay*(t**2)+2*by*t+cy
return dx,dy
def beziertatslope(xxx_todo_changeme5, xxx_todo_changeme6):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme5
(dy,dx) = xxx_todo_changeme6
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
#quadratic coefficents of slope formula
if dx:
slope = 1.0*(dy/dx)
a=3*ay-3*ax*slope
b=2*by-2*bx*slope
c=cy-cx*slope
elif dy:
slope = 1.0*(dx/dy)
a=3*ax-3*ay*slope
b=2*bx-2*by*slope
c=cx-cy*slope
else:
return []
roots = rootWrapper(0,a,b,c)
retval = []
for i in roots:
if type(i) is complex and i.imag==0:
i = i.real
if type(i) is not complex and 0<=i<=1:
retval.append(i)
return retval
def tpoint(xxx_todo_changeme7, xxx_todo_changeme8,t):
(x1,y1) = xxx_todo_changeme7
(x2,y2) = xxx_todo_changeme8
return x1+t*(x2-x1),y1+t*(y2-y1)
def beziersplitatt(xxx_todo_changeme9,t):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme9
m1=tpoint((bx0,by0),(bx1,by1),t)
m2=tpoint((bx1,by1),(bx2,by2),t)
m3=tpoint((bx2,by2),(bx3,by3),t)
m4=tpoint(m1,m2,t)
m5=tpoint(m2,m3,t)
m=tpoint(m4,m5,t)
return ((bx0,by0),m1,m4,m),(m,m5,m3,(bx3,by3))
'''
Approximating the arc length of a bezier curve
according to <http://www.cit.gu.edu.au/~anthony/info/graphics/bezier.curves>
if:
L1 = |P0 P1| +|P1 P2| +|P2 P3|
L0 = |P0 P3|
then:
L = 1/2*L0 + 1/2*L1
ERR = L1-L0
ERR approaches 0 as the number of subdivisions (m) increases
2^-4m
Reference:
Jens Gravesen <gravesen@mat.dth.dk>
"Adaptive subdivision and the length of Bezier curves"
mat-report no. 1992-10, Mathematical Institute, The Technical
University of Denmark.
'''
def pointdistance(xxx_todo_changeme10, xxx_todo_changeme11):
(x1,y1) = xxx_todo_changeme10
(x2,y2) = xxx_todo_changeme11
return math.sqrt(((x2 - x1) ** 2) + ((y2 - y1) ** 2))
def Gravesen_addifclose(b, len, error = 0.001):
box = 0
for i in range(1,4):
box += pointdistance(b[i-1], b[i])
chord = pointdistance(b[0], b[3])
if (box - chord) > error:
first, second = beziersplitatt(b, 0.5)
Gravesen_addifclose(first, len, error)
Gravesen_addifclose(second, len, error)
else:
len[0] += (box / 2.0) + (chord / 2.0)
def bezierlengthGravesen(b, error = 0.001):
len = [0]
Gravesen_addifclose(b, len, error)
return len[0]
# balf = Bezier Arc Length Function
balfax,balfbx,balfcx,balfay,balfby,balfcy = 0,0,0,0,0,0
def balf(t):
retval = (balfax*(t**2) + balfbx*t + balfcx)**2 + (balfay*(t**2) + balfby*t + balfcy)**2
return math.sqrt(retval)
def Simpson(f, a, b, n_limit, tolerance):
n = 2
multiplier = (b - a)/6.0
endsum = f(a) + f(b)
interval = (b - a)/2.0
asum = 0.0
bsum = f(a + interval)
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
est0 = 2.0 * est1
#print multiplier, endsum, interval, asum, bsum, est1, est0
while n < n_limit and abs(est1 - est0) > tolerance:
n *= 2
multiplier /= 2.0
interval /= 2.0
asum += bsum
bsum = 0.0
est0 = est1
for i in range(1, n, 2):
bsum += f(a + (i * interval))
est1 = multiplier * (endsum + (2.0 * asum) + (4.0 * bsum))
#print multiplier, endsum, interval, asum, bsum, est1, est0
return est1
def bezierlengthSimpson(xxx_todo_changeme12, tolerance = 0.001):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme12
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
return Simpson(balf, 0.0, 1.0, 4096, tolerance)
def beziertatlength(xxx_todo_changeme13, l = 0.5, tolerance = 0.001):
((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)) = xxx_todo_changeme13
global balfax,balfbx,balfcx,balfay,balfby,balfcy
ax,ay,bx,by,cx,cy,x0,y0=bezierparameterize(((bx0,by0),(bx1,by1),(bx2,by2),(bx3,by3)))
balfax,balfbx,balfcx,balfay,balfby,balfcy = 3*ax,2*bx,cx,3*ay,2*by,cy
t = 1.0
tdiv = t
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
targetlen = l * curlen
diff = curlen - targetlen
while abs(diff) > tolerance:
tdiv /= 2.0
if diff < 0:
t += tdiv
else:
t -= tdiv
curlen = Simpson(balf, 0.0, t, 4096, tolerance)
diff = curlen - targetlen
return t
#default bezier length method
bezierlength = bezierlengthSimpson
if __name__ == '__main__':
import timing
#print linebezierintersect(((,),(,)),((,),(,),(,),(,)))
#print linebezierintersect(((0,1),(0,-1)),((-1,0),(-.5,0),(.5,0),(1,0)))
tol = 0.00000001
curves = [((0,0),(1,5),(4,5),(5,5)),
((0,0),(0,0),(5,0),(10,0)),
((0,0),(0,0),(5,1),(10,0)),
((-10,0),(0,0),(10,0),(10,10)),
((15,10),(0,0),(10,0),(-5,10))]
'''
for curve in curves:
timing.start()
g = bezierlengthGravesen(curve,tol)
timing.finish()
gt = timing.micro()
timing.start()
s = bezierlengthSimpson(curve,tol)
timing.finish()
st = timing.micro()
print g, gt
print s, st
'''
for curve in curves:
print(beziertatlength(curve,0.5))
# vim: expandtab shiftwidth=4 tabstop=8 softtabstop=4 fileencoding=utf-8 textwidth=99