给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n))
。
示例 1:
输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106
题目要求算法的时间复杂度为
如果
因此,我们可以设计一个函数
函数
- 如果
$i \geq m$ ,说明数组$nums1$ 的区间$[i, m)$ 为空,因此直接返回$nums2[j + k - 1]$ ; - 如果
$j \geq n$ ,说明数组$nums2$ 的区间$[j, n)$ 为空,因此直接返回$nums1[i + k - 1]$ ; - 如果
$k = 1$ ,说明要找第一个数,因此只需要返回$nums1[i]$ 和$nums2[j]$ 中的最小值; - 否则,我们分别在两个数组中查找第
$\left\lfloor\frac{k}{2}\right\rfloor$ 个数,设为$x$ 和$y$ 。(注意,如果某个数组不存在第$\left\lfloor\frac{k}{2}\right\rfloor$ 个数,那么我们将第$\left\lfloor\frac{k}{2}\right\rfloor$ 个数视为$+\infty$ 。)比较$x$ 和$y$ 的大小:- 如果
$x \leq y$ ,则说明数组$nums1$ 的第$\left\lfloor\frac{k}{2}\right\rfloor$ 个数不可能是第$k$ 小的数,因此我们可以排除数组$nums1$ 的区间$[i, i + \left\lfloor\frac{k}{2}\right\rfloor)$ ,递归调用$f(i + \left\lfloor\frac{k}{2}\right\rfloor, j, k - \left\lfloor\frac{k}{2}\right\rfloor)$ 。 - 如果
$x > y$ ,则说明数组$nums2$ 的第$\left\lfloor\frac{k}{2}\right\rfloor$ 个数不可能是第$k$ 小的数,因此我们可以排除数组$nums2$ 的区间$[j, j + \left\lfloor\frac{k}{2}\right\rfloor)$ ,递归调用$f(i, j + \left\lfloor\frac{k}{2}\right\rfloor, k - \left\lfloor\frac{k}{2}\right\rfloor)$ 。
- 如果
时间复杂度
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
def f(i: int, j: int, k: int) -> int:
if i >= m:
return nums2[j + k - 1]
if j >= n:
return nums1[i + k - 1]
if k == 1:
return min(nums1[i], nums2[j])
p = k // 2
x = nums1[i + p - 1] if i + p - 1 < m else inf
y = nums2[j + p - 1] if j + p - 1 < n else inf
return f(i + p, j, k - p) if x < y else f(i, j + p, k - p)
m, n = len(nums1), len(nums2)
a = f(0, 0, (m + n + 1) // 2)
b = f(0, 0, (m + n + 2) // 2)
return (a + b) / 2
class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.length;
n = nums2.length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int m = nums1.size(), n = nums2.size();
function<int(int, int, int)> f = [&](int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
};
func findMedianSortedArrays(nums1 []int, nums2 []int) float64 {
m, n := len(nums1), len(nums2)
var f func(i, j, k int) int
f = func(i, j, k int) int {
if i >= m {
return nums2[j+k-1]
}
if j >= n {
return nums1[i+k-1]
}
if k == 1 {
return min(nums1[i], nums2[j])
}
p := k / 2
x, y := 1<<30, 1<<30
if ni := i + p - 1; ni < m {
x = nums1[ni]
}
if nj := j + p - 1; nj < n {
y = nums2[nj]
}
if x < y {
return f(i+p, j, k-p)
}
return f(i, j+p, k-p)
}
a, b := f(0, 0, (m+n+1)/2), f(0, 0, (m+n+2)/2)
return float64(a+b) / 2.0
}
function findMedianSortedArrays(nums1: number[], nums2: number[]): number {
const m = nums1.length;
const n = nums2.length;
const f = (i: number, j: number, k: number): number => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
}
/**
* @param {number[]} nums1
* @param {number[]} nums2
* @return {number}
*/
var findMedianSortedArrays = function (nums1, nums2) {
const m = nums1.length;
const n = nums2.length;
const f = (i, j, k) => {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.min(nums1[i], nums2[j]);
}
const p = Math.floor(k / 2);
const x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
const y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
};
const a = f(0, 0, Math.floor((m + n + 1) / 2));
const b = f(0, 0, Math.floor((m + n + 2) / 2));
return (a + b) / 2;
};
public class Solution {
private int m;
private int n;
private int[] nums1;
private int[] nums2;
public double FindMedianSortedArrays(int[] nums1, int[] nums2) {
m = nums1.Length;
n = nums2.Length;
this.nums1 = nums1;
this.nums2 = nums2;
int a = f(0, 0, (m + n + 1) / 2);
int b = f(0, 0, (m + n + 2) / 2);
return (a + b) / 2.0;
}
private int f(int i, int j, int k) {
if (i >= m) {
return nums2[j + k - 1];
}
if (j >= n) {
return nums1[i + k - 1];
}
if (k == 1) {
return Math.Min(nums1[i], nums2[j]);
}
int p = k / 2;
int x = i + p - 1 < m ? nums1[i + p - 1] : 1 << 30;
int y = j + p - 1 < n ? nums2[j + p - 1] : 1 << 30;
return x < y ? f(i + p, j, k - p) : f(i, j + p, k - p);
}
}
class Solution {
/**
* @param int[] $nums1
* @param int[] $nums2
* @return float
*/
function findMedianSortedArrays($nums1, $nums2) {
$arr = array_merge($nums1, $nums2);
sort($arr);
$cnt_arr = count($arr);
if ($cnt_arr % 2) {
return $arr[$cnt_arr / 2];
} else {
return ($arr[intdiv($cnt_arr, 2) - 1] + $arr[intdiv($cnt_arr, 2)]) / 2;
}
}
}
import std/[algorithm, sequtils]
proc medianOfTwoSortedArrays(nums1: seq[int], nums2: seq[int]): float =
var
fullList: seq[int] = concat(nums1, nums2)
value: int = fullList.len div 2
fullList.sort()
if fullList.len mod 2 == 0:
result = (fullList[value - 1] + fullList[value]) / 2
else:
result = fullList[value].toFloat()
# Driver Code
# var
# arrA: seq[int] = @[1, 2]
# arrB: seq[int] = @[3, 4, 5]
# echo medianOfTwoSortedArrays(arrA, arrB)