给你两个单词 word1
和 word2
, 请返回将 word1
转换成 word2
所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
- 插入一个字符
- 删除一个字符
- 替换一个字符
示例 1:
输入:word1 = "horse", word2 = "ros" 输出:3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> rose (删除 'r') rose -> ros (删除 'e')
示例 2:
输入:word1 = "intention", word2 = "execution" 输出:5 解释: intention -> inention (删除 't') inention -> enention (将 'i' 替换为 'e') enention -> exention (将 'n' 替换为 'x') exention -> exection (将 'n' 替换为 'c') exection -> execution (插入 'u')
提示:
0 <= word1.length, word2.length <= 500
word1
和word2
由小写英文字母组成
我们定义
考虑
- 如果
$word1[i - 1] = word2[j - 1]$ ,那么我们只需要考虑将$word1$ 的前$i - 1$ 个字符转换成$word2$ 的前$j - 1$ 个字符所使用的最少操作数,因此$f[i][j] = f[i - 1][j - 1]$ ; - 否则,我们可以考虑插入、删除、替换操作,那么
$f[i][j] = \min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1$ 。
综上,我们可以得到状态转移方程:
最后,我们返回
时间复杂度
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
m, n = len(word1), len(word2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for j in range(1, n + 1):
f[0][j] = j
for i, a in enumerate(word1, 1):
f[i][0] = i
for j, b in enumerate(word2, 1):
if a == b:
f[i][j] = f[i - 1][j - 1]
else:
f[i][j] = min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1
return f[m][n]
class Solution {
public int minDistance(String word1, String word2) {
int m = word1.length(), n = word2.length();
int[][] f = new int[m + 1][n + 1];
for (int j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
f[i][0] = i;
for (int j = 1; j <= n; ++j) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], Math.min(f[i][j - 1], f[i - 1][j - 1])) + 1;
}
}
}
return f[m][n];
}
}
class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
int f[m + 1][n + 1];
for (int j = 0; j <= n; ++j) {
f[0][j] = j;
}
for (int i = 1; i <= m; ++i) {
f[i][0] = i;
for (int j = 1; j <= n; ++j) {
if (word1[i - 1] == word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = min({f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]}) + 1;
}
}
}
return f[m][n];
}
};
func minDistance(word1 string, word2 string) int {
m, n := len(word1), len(word2)
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
for j := 1; j <= n; j++ {
f[0][j] = j
}
for i := 1; i <= m; i++ {
f[i][0] = i
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
f[i][j] = f[i-1][j-1]
} else {
f[i][j] = min(f[i-1][j], min(f[i][j-1], f[i-1][j-1])) + 1
}
}
}
return f[m][n]
}
function minDistance(word1: string, word2: string): number {
const m = word1.length;
const n = word2.length;
const f: number[][] = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
}
}
}
return f[m][n];
}
/**
* @param {string} word1
* @param {string} word2
* @return {number}
*/
var minDistance = function (word1, word2) {
const m = word1.length;
const n = word2.length;
const f = Array(m + 1)
.fill(0)
.map(() => Array(n + 1).fill(0));
for (let j = 1; j <= n; ++j) {
f[0][j] = j;
}
for (let i = 1; i <= m; ++i) {
f[i][0] = i;
for (let j = 1; j <= n; ++j) {
if (word1[i - 1] === word2[j - 1]) {
f[i][j] = f[i - 1][j - 1];
} else {
f[i][j] = Math.min(f[i - 1][j], f[i][j - 1], f[i - 1][j - 1]) + 1;
}
}
}
return f[m][n];
};