给你一个整数数组 nums
,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。
你必须设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题。
示例 1:
输入:nums = [2,2,3,2] 输出:3
示例 2:
输入:nums = [0,1,0,1,0,1,99] 输出:99
提示:
1 <= nums.length <= 3 * 104
-231 <= nums[i] <= 231 - 1
nums
中,除某个元素仅出现 一次 外,其余每个元素都恰出现 三次
我们可以枚举每个二进制位
时间复杂度
class Solution:
def singleNumber(self, nums: List[int]) -> int:
ans = 0
for i in range(32):
cnt = sum(num >> i & 1 for num in nums)
if cnt % 3:
if i == 31:
ans -= 1 << i
else:
ans |= 1 << i
return ans
class Solution {
public int singleNumber(int[] nums) {
int ans = 0;
for (int i = 0; i < 32; i++) {
int cnt = 0;
for (int num : nums) {
cnt += num >> i & 1;
}
cnt %= 3;
ans |= cnt << i;
}
return ans;
}
}
class Solution {
public:
int singleNumber(vector<int>& nums) {
int ans = 0;
for (int i = 0; i < 32; ++i) {
int cnt = 0;
for (int num : nums) {
cnt += ((num >> i) & 1);
}
cnt %= 3;
ans |= cnt << i;
}
return ans;
}
};
func singleNumber(nums []int) int {
ans := int32(0)
for i := 0; i < 32; i++ {
cnt := int32(0)
for _, num := range nums {
cnt += int32(num) >> i & 1
}
cnt %= 3
ans |= cnt << i
}
return int(ans)
}
function singleNumber(nums: number[]): number {
let ans = 0;
for (let i = 0; i < 32; i++) {
const count = nums.reduce((r, v) => r + ((v >> i) & 1), 0);
ans |= count % 3 << i;
}
return ans;
}
impl Solution {
pub fn single_number(nums: Vec<i32>) -> i32 {
let mut ans = 0;
for i in 0..32 {
let count = nums
.iter()
.map(|v| (v >> i) & 1)
.sum::<i32>();
ans |= count % 3 << i;
}
ans
}
}
int singleNumber(int* nums, int numsSize) {
int ans = 0;
for (int i = 0; i < 32; i++) {
int count = 0;
for (int j = 0; j < numsSize; j++) {
if (nums[j] >> i & 1) {
count++;
}
}
ans |= (uint) (count % 3) << i;
}
return ans;
}
class Solution {
func singleNumber(_ nums: [Int]) -> Int {
var a = nums.sorted()
var n = a.count
for i in stride(from: 0, through: n - 2, by: 3) {
if a[i] != a[i + 1] {
return a[i]
}
}
return a[n - 1]
}
}
我们考虑一种更高效的方法,该方法使用数字电路来模拟上述的位运算。
一个整数的每个二进制位是
- 整数
$a$ 的第$i$ 位为$0$ 且整数$b$ 的第$i$ 位为$0$ ,表示模$3$ 结果是$0$ ; - 整数
$a$ 的第$i$ 位为$0$ 且整数$b$ 的第$i$ 位为$1$ ,表示模$3$ 结果是$1$ ; - 整数
$a$ 的第$i$ 位为$1$ 且整数$b$ 的第$i$ 位为$0$ ,表示模$3$ 结果是$2$ 。
我们用整数
新的 |
新的 |
|||
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
基于以上真值表,我们可以写出逻辑表达式:
以及:
最后结果是
时间复杂度
class Solution:
def singleNumber(self, nums: List[int]) -> int:
a = b = 0
for c in nums:
aa = (~a & b & c) | (a & ~b & ~c)
bb = ~a & (b ^ c)
a, b = aa, bb
return b
class Solution {
public int singleNumber(int[] nums) {
int a = 0, b = 0;
for (int c : nums) {
int aa = (~a & b & c) | (a & ~b & ~c);
int bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
}
class Solution {
public:
int singleNumber(vector<int>& nums) {
int a = 0, b = 0;
for (int c : nums) {
int aa = (~a & b & c) | (a & ~b & ~c);
int bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
};
func singleNumber(nums []int) int {
a, b := 0, 0
for _, c := range nums {
aa := (^a & b & c) | (a & ^b & ^c)
bb := ^a & (b ^ c)
a, b = aa, bb
}
return b
}
function singleNumber(nums: number[]): number {
let a = 0;
let b = 0;
for (const c of nums) {
const aa = (~a & b & c) | (a & ~b & ~c);
const bb = ~a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
impl Solution {
pub fn single_number(nums: Vec<i32>) -> i32 {
let mut a = 0;
let mut b = 0;
for c in nums {
let aa = (!a & b & c) | (a & !b & !c);
let bb = !a & (b ^ c);
a = aa;
b = bb;
}
return b;
}
}