给你一个字符串表达式 s
,请你实现一个基本计算器来计算并返回它的值。
整数除法仅保留整数部分。
你可以假设给定的表达式总是有效的。所有中间结果将在 [-231, 231 - 1]
的范围内。
注意:不允许使用任何将字符串作为数学表达式计算的内置函数,比如 eval()
。
示例 1:
输入:s = "3+2*2" 输出:7
示例 2:
输入:s = " 3/2 " 输出:1
示例 3:
输入:s = " 3+5 / 2 " 输出:5
提示:
1 <= s.length <= 3 * 105
s
由整数和算符('+', '-', '*', '/')
组成,中间由一些空格隔开s
表示一个 有效表达式- 表达式中的所有整数都是非负整数,且在范围
[0, 231 - 1]
内 - 题目数据保证答案是一个 32-bit 整数
遍历字符串 sign
记录每个数字之前的运算符,对于第一个数字,其之前的运算符视为加号。每次遍历到数字末尾时,根据 sign
来决定计算方式:
- 加号:将数字压入栈;
- 减号:将数字的相反数压入栈;
- 乘除号:计算数字与栈顶元素,并将栈顶元素替换为计算结果。
遍历结束后,将栈中元素求和即为答案。
时间复杂度
class Solution:
def calculate(self, s: str) -> int:
v, n = 0, len(s)
sign = '+'
stk = []
for i, c in enumerate(s):
if c.isdigit():
v = v * 10 + int(c)
if i == n - 1 or c in '+-*/':
match sign:
case '+':
stk.append(v)
case '-':
stk.append(-v)
case '*':
stk.append(stk.pop() * v)
case '/':
stk.append(int(stk.pop() / v))
sign = c
v = 0
return sum(stk)
class Solution {
public int calculate(String s) {
Deque<Integer> stk = new ArrayDeque<>();
char sign = '+';
int v = 0;
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
if (Character.isDigit(c)) {
v = v * 10 + (c - '0');
}
if (i == s.length() - 1 || c == '+' || c == '-' || c == '*' || c == '/') {
if (sign == '+') {
stk.push(v);
} else if (sign == '-') {
stk.push(-v);
} else if (sign == '*') {
stk.push(stk.pop() * v);
} else {
stk.push(stk.pop() / v);
}
sign = c;
v = 0;
}
}
int ans = 0;
while (!stk.isEmpty()) {
ans += stk.pop();
}
return ans;
}
}
class Solution {
public:
int calculate(string s) {
int v = 0, n = s.size();
char sign = '+';
stack<int> stk;
for (int i = 0; i < n; ++i) {
char c = s[i];
if (isdigit(c)) v = v * 10 + (c - '0');
if (i == n - 1 || c == '+' || c == '-' || c == '*' || c == '/') {
if (sign == '+')
stk.push(v);
else if (sign == '-')
stk.push(-v);
else if (sign == '*') {
int t = stk.top();
stk.pop();
stk.push(t * v);
} else {
int t = stk.top();
stk.pop();
stk.push(t / v);
}
sign = c;
v = 0;
}
}
int ans = 0;
while (!stk.empty()) {
ans += stk.top();
stk.pop();
}
return ans;
}
};
func calculate(s string) int {
sign := '+'
stk := []int{}
v := 0
for i, c := range s {
digit := '0' <= c && c <= '9'
if digit {
v = v*10 + int(c-'0')
}
if i == len(s)-1 || !digit && c != ' ' {
switch sign {
case '+':
stk = append(stk, v)
case '-':
stk = append(stk, -v)
case '*':
stk[len(stk)-1] *= v
case '/':
stk[len(stk)-1] /= v
}
sign = c
v = 0
}
}
ans := 0
for _, v := range stk {
ans += v
}
return ans
}
using System.Collections.Generic;
using System.Linq;
struct Element
{
public char Op;
public int Number;
public Element(char op, int number)
{
Op = op;
Number = number;
}
}
public class Solution {
public int Calculate(string s) {
var stack = new Stack<Element>();
var readingNumber = false;
var number = 0;
var op = '+';
foreach (var ch in ((IEnumerable<char>)s).Concat(Enumerable.Repeat('+', 1)))
{
if (ch >= '0' && ch <= '9')
{
if (!readingNumber)
{
readingNumber = true;
number = 0;
}
number = (number * 10) + (ch - '0');
}
else if (ch != ' ')
{
readingNumber = false;
if (op == '+' || op == '-')
{
if (stack.Count == 2)
{
var prev = stack.Pop();
var first = stack.Pop();
if (prev.Op == '+')
{
stack.Push(new Element(first.Op, first.Number + prev.Number));
}
else // '-'
{
stack.Push(new Element(first.Op, first.Number - prev.Number));
}
}
stack.Push(new Element(op, number));
}
else
{
var prev = stack.Pop();
if (op == '*')
{
stack.Push(new Element(prev.Op, prev.Number * number));
}
else // '/'
{
stack.Push(new Element(prev.Op, prev.Number / number));
}
}
op = ch;
}
}
if (stack.Count == 2)
{
var second = stack.Pop();
var first = stack.Pop();
if (second.Op == '+')
{
stack.Push(new Element(first.Op, first.Number + second.Number));
}
else // '-'
{
stack.Push(new Element(first.Op, first.Number - second.Number));
}
}
return stack.Peek().Number;
}
}