Skip to content

Latest commit

 

History

History
151 lines (124 loc) · 3.12 KB

File metadata and controls

151 lines (124 loc) · 3.12 KB

中文文档

Description

Numbers can be regarded as the product of their factors.

  • For example, 8 = 2 x 2 x 2 = 2 x 4.

Given an integer n, return all possible combinations of its factors. You may return the answer in any order.

Note that the factors should be in the range [2, n - 1].

 

Example 1:

Input: n = 1
Output: []

Example 2:

Input: n = 12
Output: [[2,6],[3,4],[2,2,3]]

Example 3:

Input: n = 37
Output: []

 

Constraints:

  • 1 <= n <= 107

Solutions

Solution 1

class Solution:
    def getFactors(self, n: int) -> List[List[int]]:
        def dfs(n, i):
            if t:
                ans.append(t + [n])
            j = i
            while j * j <= n:
                if n % j == 0:
                    t.append(j)
                    dfs(n // j, j)
                    t.pop()
                j += 1

        t = []
        ans = []
        dfs(n, 2)
        return ans
class Solution {
    private List<Integer> t = new ArrayList<>();
    private List<List<Integer>> ans = new ArrayList<>();

    public List<List<Integer>> getFactors(int n) {
        dfs(n, 2);
        return ans;
    }

    private void dfs(int n, int i) {
        if (!t.isEmpty()) {
            List<Integer> cp = new ArrayList<>(t);
            cp.add(n);
            ans.add(cp);
        }
        for (int j = i; j <= n / j; ++j) {
            if (n % j == 0) {
                t.add(j);
                dfs(n / j, j);
                t.remove(t.size() - 1);
            }
        }
    }
}
class Solution {
public:
    vector<vector<int>> getFactors(int n) {
        vector<int> t;
        vector<vector<int>> ans;
        function<void(int, int)> dfs = [&](int n, int i) {
            if (t.size()) {
                vector<int> cp = t;
                cp.emplace_back(n);
                ans.emplace_back(cp);
            }
            for (int j = i; j <= n / j; ++j) {
                if (n % j == 0) {
                    t.emplace_back(j);
                    dfs(n / j, j);
                    t.pop_back();
                }
            }
        };
        dfs(n, 2);
        return ans;
    }
};
func getFactors(n int) [][]int {
	t := []int{}
	ans := [][]int{}
	var dfs func(n, i int)
	dfs = func(n, i int) {
		if len(t) > 0 {
			ans = append(ans, append(slices.Clone(t), n))
		}
		for j := i; j <= n/j; j++ {
			if n%j == 0 {
				t = append(t, j)
				dfs(n/j, j)
				t = t[:len(t)-1]
			}
		}
	}
	dfs(n, 2)
	return ans
}