Alice plays the following game, loosely based on the card game "21".
Alice starts with 0
points and draws numbers while she has less than k
points. During each draw, she gains an integer number of points randomly from the range [1, maxPts]
, where maxPts
is an integer. Each draw is independent and the outcomes have equal probabilities.
Alice stops drawing numbers when she gets k
or more points.
Return the probability that Alice has n
or fewer points.
Answers within 10-5
of the actual answer are considered accepted.
Example 1:
Input: n = 10, k = 1, maxPts = 10 Output: 1.00000 Explanation: Alice gets a single card, then stops.
Example 2:
Input: n = 6, k = 1, maxPts = 10 Output: 0.60000 Explanation: Alice gets a single card, then stops. In 6 out of 10 possibilities, she is at or below 6 points.
Example 3:
Input: n = 21, k = 17, maxPts = 10 Output: 0.73278
Constraints:
0 <= k <= n <= 104
1 <= maxPts <= 104
class Solution:
def new21Game(self, n: int, k: int, maxPts: int) -> float:
@cache
def dfs(i: int) -> float:
if i >= k:
return int(i <= n)
if i == k - 1:
return min(n - k + 1, maxPts) / maxPts
return dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts
return dfs(0)
class Solution {
private double[] f;
private int n, k, maxPts;
public double new21Game(int n, int k, int maxPts) {
f = new double[k];
this.n = n;
this.k = k;
this.maxPts = maxPts;
return dfs(0);
}
private double dfs(int i) {
if (i >= k) {
return i <= n ? 1 : 0;
}
if (i == k - 1) {
return Math.min(n - k + 1, maxPts) * 1.0 / maxPts;
}
if (f[i] != 0) {
return f[i];
}
return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
}
}
class Solution {
public:
double new21Game(int n, int k, int maxPts) {
vector<double> f(k);
function<double(int)> dfs = [&](int i) -> double {
if (i >= k) {
return i <= n ? 1 : 0;
}
if (i == k - 1) {
return min(n - k + 1, maxPts) * 1.0 / maxPts;
}
if (f[i]) {
return f[i];
}
return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts;
};
return dfs(0);
}
};
func new21Game(n int, k int, maxPts int) float64 {
f := make([]float64, k)
var dfs func(int) float64
dfs = func(i int) float64 {
if i >= k {
if i <= n {
return 1
}
return 0
}
if i == k-1 {
return float64(min(n-k+1, maxPts)) / float64(maxPts)
}
if f[i] > 0 {
return f[i]
}
f[i] = dfs(i+1) + (dfs(i+1)-dfs(i+maxPts+1))/float64(maxPts)
return f[i]
}
return dfs(0)
}
function new21Game(n: number, k: number, maxPts: number): number {
const f = new Array(k).fill(0);
const dfs = (i: number): number => {
if (i >= k) {
return i <= n ? 1 : 0;
}
if (i === k - 1) {
return Math.min(n - k + 1, maxPts) / maxPts;
}
if (f[i] !== 0) {
return f[i];
}
return (f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts);
};
return dfs(0);
}
class Solution:
def new21Game(self, n: int, k: int, maxPts: int) -> float:
f = [0] * (k + maxPts)
for i in range(k, min(n + 1, k + maxPts)):
f[i] = 1
f[k - 1] = min(n - k + 1, maxPts) / maxPts
for i in range(k - 2, -1, -1):
f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts
return f[0]
class Solution {
public double new21Game(int n, int k, int maxPts) {
if (k == 0) {
return 1.0;
}
double[] f = new double[k + maxPts];
for (int i = k; i < Math.min(n + 1, k + maxPts); ++i) {
f[i] = 1;
}
f[k - 1] = Math.min(n - k + 1, maxPts) * 1.0 / maxPts;
for (int i = k - 2; i >= 0; --i) {
f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
}
return f[0];
}
}
class Solution {
public:
double new21Game(int n, int k, int maxPts) {
if (k == 0) {
return 1.0;
}
double f[k + maxPts];
memset(f, 0, sizeof(f));
for (int i = k; i < min(n + 1, k + maxPts); ++i) {
f[i] = 1;
}
f[k - 1] = min(n - k + 1, maxPts) * 1.0 / maxPts;
for (int i = k - 2; i >= 0; --i) {
f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
}
return f[0];
}
};
func new21Game(n int, k int, maxPts int) float64 {
if k == 0 {
return 1
}
f := make([]float64, k+maxPts)
for i := k; i < min(n+1, k+maxPts); i++ {
f[i] = 1
}
f[k-1] = float64(min(n-k+1, maxPts)) / float64(maxPts)
for i := k - 2; i >= 0; i-- {
f[i] = f[i+1] + (f[i+1]-f[i+maxPts+1])/float64(maxPts)
}
return f[0]
}
function new21Game(n: number, k: number, maxPts: number): number {
if (k === 0) {
return 1;
}
const f = new Array(k + maxPts).fill(0);
for (let i = k; i < Math.min(n + 1, k + maxPts); ++i) {
f[i] = 1;
}
f[k - 1] = Math.min(n - k + 1, maxPts) / maxPts;
for (let i = k - 2; i >= 0; --i) {
f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts;
}
return f[0];
}