You are given an integer array nums
and an integer k
.
In one operation, you can choose any index i
where 0 <= i < nums.length
and change nums[i]
to nums[i] + x
where x
is an integer from the range [-k, k]
. You can apply this operation at most once for each index i
.
The score of nums
is the difference between the maximum and minimum elements in nums
.
Return the minimum score of nums
after applying the mentioned operation at most once for each index in it.
Example 1:
Input: nums = [1], k = 0 Output: 0 Explanation: The score is max(nums) - min(nums) = 1 - 1 = 0.
Example 2:
Input: nums = [0,10], k = 2 Output: 6 Explanation: Change nums to be [2, 8]. The score is max(nums) - min(nums) = 8 - 2 = 6.
Example 3:
Input: nums = [1,3,6], k = 3 Output: 0 Explanation: Change nums to be [4, 4, 4]. The score is max(nums) - min(nums) = 4 - 4 = 0.
Constraints:
1 <= nums.length <= 104
0 <= nums[i] <= 104
0 <= k <= 104
According to the problem description, we can add
Therefore, the final answer is
The time complexity is nums
. The space complexity is
class Solution:
def smallestRangeI(self, nums: List[int], k: int) -> int:
mx, mi = max(nums), min(nums)
return max(0, mx - mi - k * 2)
class Solution {
public int smallestRangeI(int[] nums, int k) {
int mx = 0;
int mi = 10000;
for (int v : nums) {
mx = Math.max(mx, v);
mi = Math.min(mi, v);
}
return Math.max(0, mx - mi - k * 2);
}
}
class Solution {
public:
int smallestRangeI(vector<int>& nums, int k) {
auto [mi, mx] = minmax_element(nums.begin(), nums.end());
return max(0, *mx - *mi - k * 2);
}
};
func smallestRangeI(nums []int, k int) int {
mi, mx := slices.Min(nums), slices.Max(nums)
return max(0, mx-mi-k*2)
}
function smallestRangeI(nums: number[], k: number): number {
const max = nums.reduce((r, v) => Math.max(r, v));
const min = nums.reduce((r, v) => Math.min(r, v));
return Math.max(max - min - k * 2, 0);
}
impl Solution {
pub fn smallest_range_i(nums: Vec<i32>, k: i32) -> i32 {
let max = nums.iter().max().unwrap();
let min = nums.iter().min().unwrap();
(0).max(max - min - k * 2)
}
}