Given a list of dominoes
, dominoes[i] = [a, b]
is equivalent to dominoes[j] = [c, d]
if and only if either (a == c
and b == d
), or (a == d
and b == c
) - that is, one domino can be rotated to be equal to another domino.
Return the number of pairs (i, j)
for which 0 <= i < j < dominoes.length
, and dominoes[i]
is equivalent to dominoes[j]
.
Example 1:
Input: dominoes = [[1,2],[2,1],[3,4],[5,6]] Output: 1
Example 2:
Input: dominoes = [[1,2],[1,2],[1,1],[1,2],[2,2]] Output: 3
Constraints:
1 <= dominoes.length <= 4 * 104
dominoes[i].length == 2
1 <= dominoes[i][j] <= 9
We can concatenate the two numbers of each domino in order of size to form a two-digit number, so that equivalent dominoes can be concatenated into the same two-digit number. For example, both [1, 2]
and [2, 1]
are concatenated into the two-digit number 12
, and both [3, 4]
and [4, 3]
are concatenated into the two-digit number 34
.
Then we traverse all the dominoes, using an array
The time complexity is
class Solution:
def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int:
cnt = Counter()
ans = 0
for a, b in dominoes:
ans += cnt[(a, b)]
cnt[(a, b)] += 1
if a != b:
cnt[(b, a)] += 1
return ans
class Solution {
public int numEquivDominoPairs(int[][] dominoes) {
int[] cnt = new int[100];
int ans = 0;
for (var e : dominoes) {
int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0];
ans += cnt[x]++;
}
return ans;
}
}
class Solution {
public:
int numEquivDominoPairs(vector<vector<int>>& dominoes) {
int cnt[100]{};
int ans = 0;
for (auto& e : dominoes) {
int x = e[0] < e[1] ? e[0] * 10 + e[1] : e[1] * 10 + e[0];
ans += cnt[x]++;
}
return ans;
}
};
func numEquivDominoPairs(dominoes [][]int) (ans int) {
cnt := [100]int{}
for _, e := range dominoes {
x := e[0]*10 + e[1]
if e[0] > e[1] {
x = e[1]*10 + e[0]
}
ans += cnt[x]
cnt[x]++
}
return
}
class Solution:
def numEquivDominoPairs(self, dominoes: List[List[int]]) -> int:
cnt = Counter()
ans = 0
for a, b in dominoes:
x = a * 10 + b if a < b else b * 10 + a
ans += cnt[x]
cnt[x] += 1
return ans