Given an array of integers nums
and an integer threshold
, we will choose a positive integer divisor
, divide all the array by it, and sum the division's result. Find the smallest divisor
such that the result mentioned above is less than or equal to threshold
.
Each result of the division is rounded to the nearest integer greater than or equal to that element. (For example: 7/3 = 3
and 10/2 = 5
).
The test cases are generated so that there will be an answer.
Example 1:
Input: nums = [1,2,5,9], threshold = 6 Output: 5 Explanation: We can get a sum to 17 (1+2+5+9) if the divisor is 1. If the divisor is 4 we can get a sum of 7 (1+1+2+3) and if the divisor is 5 the sum will be 5 (1+1+1+2).
Example 2:
Input: nums = [44,22,33,11,1], threshold = 5 Output: 44
Constraints:
1 <= nums.length <= 5 * 104
1 <= nums[i] <= 106
nums.length <= threshold <= 106
Notice that for number
We define the left boundary of the binary search
Finally, return
The time complexity is
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
l, r = 1, max(nums)
while l < r:
mid = (l + r) >> 1
if sum((x + mid - 1) // mid for x in nums) <= threshold:
r = mid
else:
l = mid + 1
return l
class Solution:
def smallestDivisor(self, nums: List[int], threshold: int) -> int:
def f(v: int) -> bool:
v += 1
return sum((x + v - 1) // v for x in nums) <= threshold
return bisect_left(range(max(nums)), True, key=f) + 1
class Solution {
public int smallestDivisor(int[] nums, int threshold) {
int l = 1, r = 1000000;
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}
class Solution {
public:
int smallestDivisor(vector<int>& nums, int threshold) {
int l = 1;
int r = *max_element(nums.begin(), nums.end());
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
for (int x : nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
func smallestDivisor(nums []int, threshold int) int {
return sort.Search(1000000, func(v int) bool {
v++
s := 0
for _, x := range nums {
s += (x + v - 1) / v
}
return s <= threshold
}) + 1
}
function smallestDivisor(nums: number[], threshold: number): number {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
/**
* @param {number[]} nums
* @param {number} threshold
* @return {number}
*/
var smallestDivisor = function (nums, threshold) {
let l = 1;
let r = Math.max(...nums);
while (l < r) {
const mid = (l + r) >> 1;
let s = 0;
for (const x of nums) {
s += Math.ceil(x / mid);
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
};
public class Solution {
public int SmallestDivisor(int[] nums, int threshold) {
int l = 1;
int r = nums.Max();
while (l < r) {
int mid = (l + r) >> 1;
int s = 0;
foreach (int x in nums) {
s += (x + mid - 1) / mid;
}
if (s <= threshold) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
}