给你一个字符串数组 words
,数组中的每个字符串都可以看作是一个单词。请你按 任意 顺序返回 words
中是其他单词的子字符串的所有单词。
如果你可以删除 words[j]
最左侧和/或最右侧的若干字符得到 words[i]
,那么字符串 words[i]
就是 words[j]
的一个子字符串。
示例 1:
输入:words = ["mass","as","hero","superhero"] 输出:["as","hero"] 解释:"as" 是 "mass" 的子字符串,"hero" 是 "superhero" 的子字符串。 ["hero","as"] 也是有效的答案。
示例 2:
输入:words = ["leetcode","et","code"] 输出:["et","code"] 解释:"et" 和 "code" 都是 "leetcode" 的子字符串。
示例 3:
输入:words = ["blue","green","bu"] 输出:[]
提示:
1 <= words.length <= 100
1 <= words[i].length <= 30
words[i]
仅包含小写英文字母。- 题目数据 保证 每个
words[i]
都是独一无二的。
我们直接枚举所有的字符串
时间复杂度
class Solution:
def stringMatching(self, words: List[str]) -> List[str]:
ans = []
for i, s in enumerate(words):
if any(i != j and s in t for j, t in enumerate(words)):
ans.append(s)
return ans
class Solution {
public List<String> stringMatching(String[] words) {
List<String> ans = new ArrayList<>();
int n = words.length;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && words[j].contains(words[i])) {
ans.add(words[i]);
break;
}
}
}
return ans;
}
}
class Solution {
public:
vector<string> stringMatching(vector<string>& words) {
vector<string> ans;
int n = words.size();
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i != j && words[j].find(words[i]) != string::npos) {
ans.push_back(words[i]);
break;
}
}
}
return ans;
}
};
func stringMatching(words []string) []string {
ans := []string{}
for i, w1 := range words {
for j, w2 := range words {
if i != j && strings.Contains(w2, w1) {
ans = append(ans, w1)
break
}
}
}
return ans
}
function stringMatching(words: string[]): string[] {
const ans: string[] = [];
const n = words.length;
for (let i = 0; i < n; ++i) {
for (let j = 0; j < n; ++j) {
if (words[j].includes(words[i]) && i !== j) {
ans.push(words[i]);
break;
}
}
}
return ans;
}
impl Solution {
pub fn string_matching(words: Vec<String>) -> Vec<String> {
let mut ans = Vec::new();
let n = words.len();
for i in 0..n {
for j in 0..n {
if i != j && words[j].contains(&words[i]) {
ans.push(words[i].clone());
break;
}
}
}
ans
}
}