Skip to content

Latest commit

 

History

History
168 lines (134 loc) · 3.94 KB

File metadata and controls

168 lines (134 loc) · 3.94 KB

English Version

题目描述

给你一个整数 n ,请你返回所有 0 到 1 之间(不包括 0 和 1)满足分母小于等于  n 的 最简 分数 。分数可以以 任意 顺序返回。

 

示例 1:

输入:n = 2
输出:["1/2"]
解释:"1/2" 是唯一一个分母小于等于 2 的最简分数。

示例 2:

输入:n = 3
输出:["1/2","1/3","2/3"]

示例 3:

输入:n = 4
输出:["1/2","1/3","1/4","2/3","3/4"]
解释:"2/4" 不是最简分数,因为它可以化简为 "1/2" 。

示例 4:

输入:n = 1
输出:[]

 

提示:

  • 1 <= n <= 100

解法

方法一:枚举分子分母

我们可以枚举分子 $i$ 和分母 $j$,其中 $1 \leq i &lt; j \leq n$,并判断 $i$$j$ 的最大公约数是否为 $1$,如果是则 $i/j$ 是一个最简分数。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 是给定的参数。

class Solution:
    def simplifiedFractions(self, n: int) -> List[str]:
        return [
            f'{i}/{j}'
            for i in range(1, n)
            for j in range(i + 1, n + 1)
            if gcd(i, j) == 1
        ]
class Solution {
    public List<String> simplifiedFractions(int n) {
        List<String> ans = new ArrayList<>();
        for (int i = 1; i < n; ++i) {
            for (int j = i + 1; j < n + 1; ++j) {
                if (gcd(i, j) == 1) {
                    ans.add(i + "/" + j);
                }
            }
        }
        return ans;
    }

    private int gcd(int a, int b) {
        return b > 0 ? gcd(b, a % b) : a;
    }
}
class Solution {
public:
    vector<string> simplifiedFractions(int n) {
        vector<string> ans;
        for (int i = 1; i < n; ++i) {
            for (int j = i + 1; j < n + 1; ++j) {
                if (__gcd(i, j) == 1) {
                    ans.push_back(to_string(i) + "/" + to_string(j));
                }
            }
        }
        return ans;
    }
};
func simplifiedFractions(n int) (ans []string) {
	for i := 1; i < n; i++ {
		for j := i + 1; j < n+1; j++ {
			if gcd(i, j) == 1 {
				ans = append(ans, strconv.Itoa(i)+"/"+strconv.Itoa(j))
			}
		}
	}
	return ans
}

func gcd(a, b int) int {
	if b == 0 {
		return a
	}
	return gcd(b, a%b)
}
function simplifiedFractions(n: number): string[] {
    const ans: string[] = [];
    for (let i = 1; i < n; ++i) {
        for (let j = i + 1; j < n + 1; ++j) {
            if (gcd(i, j) === 1) {
                ans.push(`${i}/${j}`);
            }
        }
    }
    return ans;
}

function gcd(a: number, b: number): number {
    return b === 0 ? a : gcd(b, a % b);
}
impl Solution {
    fn gcd(a: i32, b: i32) -> i32 {
        match b {
            0 => a,
            _ => Solution::gcd(b, a % b),
        }
    }

    pub fn simplified_fractions(n: i32) -> Vec<String> {
        let mut res = vec![];
        for i in 1..n {
            for j in i + 1..=n {
                if Solution::gcd(i, j) == 1 {
                    res.push(format!("{}/{}", i, j));
                }
            }
        }
        res
    }
}