Given an array nums
. We define a running sum of an array as runningSum[i] = sum(nums[0]…nums[i])
.
Return the running sum of nums
.
Example 1:
Input: nums = [1,2,3,4] Output: [1,3,6,10] Explanation: Running sum is obtained as follows: [1, 1+2, 1+2+3, 1+2+3+4].
Example 2:
Input: nums = [1,1,1,1,1] Output: [1,2,3,4,5] Explanation: Running sum is obtained as follows: [1, 1+1, 1+1+1, 1+1+1+1, 1+1+1+1+1].
Example 3:
Input: nums = [3,1,2,10,1] Output: [3,4,6,16,17]
Constraints:
1 <= nums.length <= 1000
-10^6 <= nums[i] <= 10^6
We directly traverse the array. For the current element
The time complexity is
class Solution:
def runningSum(self, nums: List[int]) -> List[int]:
return list(accumulate(nums))
class Solution {
public int[] runningSum(int[] nums) {
for (int i = 1; i < nums.length; ++i) {
nums[i] += nums[i - 1];
}
return nums;
}
}
class Solution {
public:
vector<int> runningSum(vector<int>& nums) {
for (int i = 1; i < nums.size(); ++i) nums[i] += nums[i - 1];
return nums;
}
};
func runningSum(nums []int) []int {
for i := 1; i < len(nums); i++ {
nums[i] += nums[i-1]
}
return nums
}
function runningSum(nums: number[]): number[] {
for (let i = 1; i < nums.length; ++i) {
nums[i] += nums[i - 1];
}
return nums;
}
public class Solution {
public int[] RunningSum(int[] nums) {
for (int i = 1; i < nums.Length; ++i) {
nums[i] += nums[i - 1];
}
return nums;
}
}
class Solution {
/**
* @param Integer[] $nums
* @return Integer[]
*/
function runningSum($nums) {
for ($i = 1; $i < count($nums); $i++) {
$nums[$i] += $nums[$i - 1];
}
return $nums;
}
}