You are given three positive integers: n
, index
, and maxSum
. You want to construct an array nums
(0-indexed) that satisfies the following conditions:
nums.length == n
nums[i]
is a positive integer where0 <= i < n
.abs(nums[i] - nums[i+1]) <= 1
where0 <= i < n-1
.- The sum of all the elements of
nums
does not exceedmaxSum
. nums[index]
is maximized.
Return nums[index]
of the constructed array.
Note that abs(x)
equals x
if x >= 0
, and -x
otherwise.
Example 1:
Input: n = 4, index = 2, maxSum = 6 Output: 2 Explanation: nums = [1,2,2,1] is one array that satisfies all the conditions. There are no arrays that satisfy all the conditions and have nums[2] == 3, so 2 is the maximum nums[2].
Example 2:
Input: n = 6, index = 1, maxSum = 10 Output: 3
Constraints:
1 <= n <= maxSum <= 109
0 <= index < n
According to the problem description, if we determine the value of
In this way, we can calculate the sum of the array. If the sum is less than or equal to
To facilitate the calculation of the sum of the elements on the left and right sides of the array, we define a function
- If
$x \geq cnt$ , then the sum of the array is$\frac{(x + x - cnt + 1) \times cnt}{2}$ - If
$x \lt cnt$ , then the sum of the array is$\frac{(x + 1) \times x}{2} + cnt - x$
Next, define the left boundary of the binary search as
Finally, return
The time complexity is
class Solution:
def maxValue(self, n: int, index: int, maxSum: int) -> int:
def sum(x, cnt):
return (
(x + x - cnt + 1) * cnt // 2 if x >= cnt else (x + 1) * x // 2 + cnt - x
)
left, right = 1, maxSum
while left < right:
mid = (left + right + 1) >> 1
if sum(mid - 1, index) + sum(mid, n - index) <= maxSum:
left = mid
else:
right = mid - 1
return left
class Solution {
public int maxValue(int n, int index, int maxSum) {
int left = 1, right = maxSum;
while (left < right) {
int mid = (left + right + 1) >>> 1;
if (sum(mid - 1, index) + sum(mid, n - index) <= maxSum) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
private long sum(long x, int cnt) {
return x >= cnt ? (x + x - cnt + 1) * cnt / 2 : (x + 1) * x / 2 + cnt - x;
}
}
class Solution {
public:
int maxValue(int n, int index, int maxSum) {
auto sum = [](long x, int cnt) {
return x >= cnt ? (x + x - cnt + 1) * cnt / 2 : (x + 1) * x / 2 + cnt - x;
};
int left = 1, right = maxSum;
while (left < right) {
int mid = (left + right + 1) >> 1;
if (sum(mid - 1, index) + sum(mid, n - index) <= maxSum) {
left = mid;
} else {
right = mid - 1;
}
}
return left;
}
};
func maxValue(n int, index int, maxSum int) int {
sum := func(x, cnt int) int {
if x >= cnt {
return (x + x - cnt + 1) * cnt / 2
}
return (x+1)*x/2 + cnt - x
}
return sort.Search(maxSum, func(x int) bool {
x++
return sum(x-1, index)+sum(x, n-index) > maxSum
})
}