You are given an even integer n
. You initially have a permutation perm
of size n
where perm[i] == i
(0-indexed).
In one operation, you will create a new array arr
, and for each i
:
- If
i % 2 == 0
, thenarr[i] = perm[i / 2]
. - If
i % 2 == 1
, thenarr[i] = perm[n / 2 + (i - 1) / 2]
.
You will then assign arr
to perm
.
Return the minimum non-zero number of operations you need to perform on perm
to return the permutation to its initial value.
Example 1:
Input: n = 2 Output: 1 Explanation: perm = [0,1] initially. After the 1st operation, perm = [0,1] So it takes only 1 operation.
Example 2:
Input: n = 4 Output: 2 Explanation: perm = [0,1,2,3] initially. After the 1st operation, perm = [0,2,1,3] After the 2nd operation, perm = [0,1,2,3] So it takes only 2 operations.
Example 3:
Input: n = 6 Output: 4
Constraints:
2 <= n <= 1000
n
is even.
We observe the change pattern of the numbers and find that:
- The even-indexed numbers of the new array are the numbers in the first half of the original array in order;
- The odd-indexed numbers of the new array are the numbers in the second half of the original array in order.
That is, if the index [0, n >> 1)
, then the new index of this number is i << 1
; otherwise, the new index is (i - (n >> 1)) << 1 | 1
.
In addition, the path of number movement is the same in each round of operation. As long as a number (except for numbers
Therefore, we choose the number
The time complexity is
class Solution:
def reinitializePermutation(self, n: int) -> int:
ans, i = 0, 1
while 1:
ans += 1
if i < n >> 1:
i <<= 1
else:
i = (i - (n >> 1)) << 1 | 1
if i == 1:
return ans
class Solution {
public int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
}
class Solution {
public:
int reinitializePermutation(int n) {
int ans = 0;
for (int i = 1;;) {
++ans;
if (i < (n >> 1)) {
i <<= 1;
} else {
i = (i - (n >> 1)) << 1 | 1;
}
if (i == 1) {
return ans;
}
}
}
};
func reinitializePermutation(n int) (ans int) {
for i := 1; ; {
ans++
if i < (n >> 1) {
i <<= 1
} else {
i = (i-(n>>1))<<1 | 1
}
if i == 1 {
return ans
}
}
}