Skip to content

Latest commit

 

History

History
320 lines (276 loc) · 9.63 KB

File metadata and controls

320 lines (276 loc) · 9.63 KB

中文文档

Description

The frequency of an element is the number of times it occurs in an array.

You are given an integer array nums and an integer k. In one operation, you can choose an index of nums and increment the element at that index by 1.

Return the maximum possible frequency of an element after performing at most k operations.

 

Example 1:

Input: nums = [1,2,4], k = 5
Output: 3
Explanation: Increment the first element three times and the second element two times to make nums = [4,4,4].
4 has a frequency of 3.

Example 2:

Input: nums = [1,4,8,13], k = 5
Output: 2
Explanation: There are multiple optimal solutions:
- Increment the first element three times to make nums = [4,4,8,13]. 4 has a frequency of 2.
- Increment the second element four times to make nums = [1,8,8,13]. 8 has a frequency of 2.
- Increment the third element five times to make nums = [1,4,13,13]. 13 has a frequency of 2.

Example 3:

Input: nums = [3,9,6], k = 2
Output: 1

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105
  • 1 <= k <= 105

Solutions

Solution 1: Sorting + Prefix Sum + Binary Search

According to the problem description, we can draw three conclusions:

  1. After several operations, the element with the highest frequency in the array must be an element in the original array. Why? Suppose the elements operated are $a_1, a_2, \cdots, a_m$, where the maximum is $a_m$. These elements have all been changed to the same value $x$, where $x \geq a_m$. Then we can also change these elements all to $a_m$, and the number of operations will not increase.
  2. The elements operated must be a continuous subarray in the sorted array.
  3. If a frequency $m$ satisfies the condition, then all $m' &lt; m$ also satisfy the condition. This inspires us to consider using binary search to find the maximum frequency that satisfies the condition.

Therefore, we can sort the array $nums$ and then calculate the prefix sum array $s$ of the sorted array, where $s[i]$ represents the sum of the first $i$ elements.

Next, we define the left boundary of the binary search as $l = 1$, and the right boundary as $r = n$. For each binary search, we take the middle value $m = (l + r + 1) / 2$, and then check whether there exists a continuous subarray of length $m$ such that all elements in the subarray can be changed to an element in the array, and the number of operations does not exceed $k$. If such a subarray exists, we can update the left boundary $l$ to $m$, otherwise update the right boundary $r$ to $m - 1$.

Finally, return the left boundary $l$.

The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Where $n$ is the length of the array $nums$.

class Solution:
    def maxFrequency(self, nums: List[int], k: int) -> int:
        def check(m: int) -> bool:
            for i in range(m, n + 1):
                if nums[i - 1] * m - (s[i] - s[i - m]) <= k:
                    return True
            return False

        n = len(nums)
        nums.sort()
        s = list(accumulate(nums, initial=0))
        l, r = 1, n
        while l < r:
            mid = (l + r + 1) >> 1
            if check(mid):
                l = mid
            else:
                r = mid - 1
        return l
class Solution {
    private int[] nums;
    private long[] s;
    private int k;

    public int maxFrequency(int[] nums, int k) {
        this.k = k;
        this.nums = nums;
        Arrays.sort(nums);
        int n = nums.length;
        s = new long[n + 1];
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] + nums[i - 1];
        }
        int l = 1, r = n;
        while (l < r) {
            int mid = (l + r + 1) >> 1;
            if (check(mid)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return l;
    }

    private boolean check(int m) {
        for (int i = m; i <= nums.length; ++i) {
            if (1L * nums[i - 1] * m - (s[i] - s[i - m]) <= k) {
                return true;
            }
        }
        return false;
    }
}
class Solution {
public:
    int maxFrequency(vector<int>& nums, int k) {
        int n = nums.size();
        sort(nums.begin(), nums.end());
        long long s[n + 1];
        s[0] = 0;
        for (int i = 1; i <= n; ++i) {
            s[i] = s[i - 1] + nums[i - 1];
        }
        int l = 1, r = n;
        auto check = [&](int m) {
            for (int i = m; i <= n; ++i) {
                if (1LL * nums[i - 1] * m - (s[i] - s[i - m]) <= k) {
                    return true;
                }
            }
            return false;
        };
        while (l < r) {
            int mid = (l + r + 1) >> 1;
            if (check(mid)) {
                l = mid;
            } else {
                r = mid - 1;
            }
        }
        return l;
    }
};
func maxFrequency(nums []int, k int) int {
	n := len(nums)
	sort.Ints(nums)
	s := make([]int, n+1)
	for i, x := range nums {
		s[i+1] = s[i] + x
	}
	check := func(m int) bool {
		for i := m; i <= n; i++ {
			if nums[i-1]*m-(s[i]-s[i-m]) <= k {
				return true
			}
		}
		return false
	}
	l, r := 1, n
	for l < r {
		mid := (l + r + 1) >> 1
		if check(mid) {
			l = mid
		} else {
			r = mid - 1
		}
	}
	return l
}
function maxFrequency(nums: number[], k: number): number {
    const n = nums.length;
    nums.sort((a, b) => a - b);
    const s: number[] = Array(n + 1).fill(0);
    for (let i = 1; i <= n; ++i) {
        s[i] = s[i - 1] + nums[i - 1];
    }
    let [l, r] = [1, n];
    const check = (m: number): boolean => {
        for (let i = m; i <= n; ++i) {
            if (nums[i - 1] * m - (s[i] - s[i - m]) <= k) {
                return true;
            }
        }
        return false;
    };
    while (l < r) {
        const mid = (l + r + 1) >> 1;
        if (check(mid)) {
            l = mid;
        } else {
            r = mid - 1;
        }
    }
    return l;
}

Solution 2: Sorting + Two Pointers

We can also use two pointers to maintain a sliding window, where all elements in the window can be changed to the maximum value in the window. The number of operations for the elements in the window is $s$, and $s \leq k$.

Initially, we set the left pointer $j$ to point to the first element of the array, and the right pointer $i$ also points to the first element of the array. Next, we move the right pointer $i$ each time, changing all elements in the window to $nums[i]$. At this time, the number of operations to be increased is $(nums[i] - nums[i - 1]) \times (i - j)$. If this number of operations exceeds $k$, then we need to move the left pointer $j$ until the number of operations for the elements in the window does not exceed $k$. Then, we update the answer to the maximum length of the window.

The time complexity is $O(n \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array $nums$.

class Solution:
    def maxFrequency(self, nums: List[int], k: int) -> int:
        nums.sort()
        ans = 1
        s = j = 0
        for i in range(1, len(nums)):
            s += (nums[i] - nums[i - 1]) * (i - j)
            while s > k:
                s -= nums[i] - nums[j]
                j += 1
            ans = max(ans, i - j + 1)
        return ans
class Solution {
    public int maxFrequency(int[] nums, int k) {
        Arrays.sort(nums);
        int ans = 1;
        long s = 0;
        for (int i = 1, j = 0; i < nums.length; ++i) {
            s += 1L * (nums[i] - nums[i - 1]) * (i - j);
            while (s > k) {
                s -= nums[i] - nums[j++];
            }
            ans = Math.max(ans, i - j + 1);
        }
        return ans;
    }
}
class Solution {
public:
    int maxFrequency(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end());
        int ans = 1;
        long long s = 0;
        for (int i = 1, j = 0; i < nums.size(); ++i) {
            s += 1LL * (nums[i] - nums[i - 1]) * (i - j);
            while (s > k) {
                s -= nums[i] - nums[j++];
            }
            ans = max(ans, i - j + 1);
        }
        return ans;
    }
};
func maxFrequency(nums []int, k int) int {
	sort.Ints(nums)
	ans := 1
	s := 0
	for i, j := 1, 0; i < len(nums); i++ {
		s += (nums[i] - nums[i-1]) * (i - j)
		for ; s > k; j++ {
			s -= nums[i] - nums[j]
		}
		ans = max(ans, i-j+1)
	}
	return ans
}
function maxFrequency(nums: number[], k: number): number {
    nums.sort((a, b) => a - b);
    let ans = 1;
    let [s, j] = [0, 0];
    for (let i = 1; i < nums.length; ++i) {
        s += (nums[i] - nums[i - 1]) * (i - j);
        while (s > k) {
            s -= nums[i] - nums[j++];
        }
        ans = Math.max(ans, i - j + 1);
    }
    return ans;
}