Given a string of digits s
, return the number of palindromic subsequences of s
having length 5
. Since the answer may be very large, return it modulo 109 + 7
.
Note:
- A string is palindromic if it reads the same forward and backward.
- A subsequence is a string that can be derived from another string by deleting some or no characters without changing the order of the remaining characters.
Example 1:
Input: s = "103301" Output: 2 Explanation: There are 6 possible subsequences of length 5: "10330","10331","10301","10301","13301","03301". Two of them (both equal to "10301") are palindromic.
Example 2:
Input: s = "0000000" Output: 21 Explanation: All 21 subsequences are "00000", which is palindromic.
Example 3:
Input: s = "9999900000" Output: 2 Explanation: The only two palindromic subsequences are "99999" and "00000".
Constraints:
1 <= s.length <= 104
s
consists of digits.
The time complexity is
class Solution:
def countPalindromes(self, s: str) -> int:
mod = 10**9 + 7
n = len(s)
pre = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
suf = [[[0] * 10 for _ in range(10)] for _ in range(n + 2)]
t = list(map(int, s))
c = [0] * 10
for i, v in enumerate(t, 1):
for j in range(10):
for k in range(10):
pre[i][j][k] = pre[i - 1][j][k]
for j in range(10):
pre[i][j][v] += c[j]
c[v] += 1
c = [0] * 10
for i in range(n, 0, -1):
v = t[i - 1]
for j in range(10):
for k in range(10):
suf[i][j][k] = suf[i + 1][j][k]
for j in range(10):
suf[i][j][v] += c[j]
c[v] += 1
ans = 0
for i in range(1, n + 1):
for j in range(10):
for k in range(10):
ans += pre[i - 1][j][k] * suf[i + 1][j][k]
ans %= mod
return ans
class Solution {
private static final int MOD = (int) 1e9 + 7;
public int countPalindromes(String s) {
int n = s.length();
int[][][] pre = new int[n + 2][10][10];
int[][][] suf = new int[n + 2][10][10];
int[] t = new int[n];
for (int i = 0; i < n; ++i) {
t[i] = s.charAt(i) - '0';
}
int[] c = new int[10];
for (int i = 1; i <= n; ++i) {
int v = t[i - 1];
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
pre[i][j][k] = pre[i - 1][j][k];
}
}
for (int j = 0; j < 10; ++j) {
pre[i][j][v] += c[j];
}
c[v]++;
}
c = new int[10];
for (int i = n; i > 0; --i) {
int v = t[i - 1];
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
suf[i][j][k] = suf[i + 1][j][k];
}
}
for (int j = 0; j < 10; ++j) {
suf[i][j][v] += c[j];
}
c[v]++;
}
long ans = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
ans += (long) pre[i - 1][j][k] * suf[i + 1][j][k];
ans %= MOD;
}
}
}
return (int) ans;
}
}
class Solution {
public:
const int mod = 1e9 + 7;
int countPalindromes(string s) {
int n = s.size();
int pre[n + 2][10][10];
int suf[n + 2][10][10];
memset(pre, 0, sizeof pre);
memset(suf, 0, sizeof suf);
int t[n];
for (int i = 0; i < n; ++i) t[i] = s[i] - '0';
int c[10] = {0};
for (int i = 1; i <= n; ++i) {
int v = t[i - 1];
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
pre[i][j][k] = pre[i - 1][j][k];
}
}
for (int j = 0; j < 10; ++j) {
pre[i][j][v] += c[j];
}
c[v]++;
}
memset(c, 0, sizeof c);
for (int i = n; i > 0; --i) {
int v = t[i - 1];
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
suf[i][j][k] = suf[i + 1][j][k];
}
}
for (int j = 0; j < 10; ++j) {
suf[i][j][v] += c[j];
}
c[v]++;
}
long ans = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < 10; ++j) {
for (int k = 0; k < 10; ++k) {
ans += 1ll * pre[i - 1][j][k] * suf[i + 1][j][k];
ans %= mod;
}
}
}
return ans;
}
};
func countPalindromes(s string) int {
n := len(s)
pre := [10010][10][10]int{}
suf := [10010][10][10]int{}
t := make([]int, n)
for i, c := range s {
t[i] = int(c - '0')
}
c := [10]int{}
for i := 1; i <= n; i++ {
v := t[i-1]
for j := 0; j < 10; j++ {
for k := 0; k < 10; k++ {
pre[i][j][k] = pre[i-1][j][k]
}
}
for j := 0; j < 10; j++ {
pre[i][j][v] += c[j]
}
c[v]++
}
c = [10]int{}
for i := n; i > 0; i-- {
v := t[i-1]
for j := 0; j < 10; j++ {
for k := 0; k < 10; k++ {
suf[i][j][k] = suf[i+1][j][k]
}
}
for j := 0; j < 10; j++ {
suf[i][j][v] += c[j]
}
c[v]++
}
ans := 0
const mod int = 1e9 + 7
for i := 1; i <= n; i++ {
for j := 0; j < 10; j++ {
for k := 0; k < 10; k++ {
ans += pre[i-1][j][k] * suf[i+1][j][k]
ans %= mod
}
}
}
return ans
}