Given an integer num
, return the number of digits in num
that divide num
.
An integer val
divides nums
if nums % val == 0
.
Example 1:
Input: num = 7 Output: 1 Explanation: 7 divides itself, hence the answer is 1.
Example 2:
Input: num = 121 Output: 2 Explanation: 121 is divisible by 1, but not 2. Since 1 occurs twice as a digit, we return 2.
Example 3:
Input: num = 1248 Output: 4 Explanation: 1248 is divisible by all of its digits, hence the answer is 4.
Constraints:
1 <= num <= 109
num
does not contain0
as one of its digits.
We directly enumerate each digit
After the enumeration, we return the answer.
The time complexity is
class Solution:
def countDigits(self, num: int) -> int:
ans, x = 0, num
while x:
x, val = divmod(x, 10)
ans += num % val == 0
return ans
class Solution {
public int countDigits(int num) {
int ans = 0;
for (int x = num; x > 0; x /= 10) {
if (num % (x % 10) == 0) {
++ans;
}
}
return ans;
}
}
class Solution {
public:
int countDigits(int num) {
int ans = 0;
for (int x = num; x > 0; x /= 10) {
if (num % (x % 10) == 0) {
++ans;
}
}
return ans;
}
};
func countDigits(num int) (ans int) {
for x := num; x > 0; x /= 10 {
if num%(x%10) == 0 {
ans++
}
}
return
}
function countDigits(num: number): number {
let ans = 0;
for (let x = num; x; x = (x / 10) | 0) {
if (num % (x % 10) === 0) {
++ans;
}
}
return ans;
}
impl Solution {
pub fn count_digits(num: i32) -> i32 {
let mut ans = 0;
let mut cur = num;
while cur != 0 {
if num % (cur % 10) == 0 {
ans += 1;
}
cur /= 10;
}
ans
}
}
int countDigits(int num) {
int ans = 0;
int cur = num;
while (cur) {
if (num % (cur % 10) == 0) {
ans++;
}
cur /= 10;
}
return ans;
}
function countDigits(num: number): number {
let ans = 0;
for (const s of num.toString()) {
if (num % Number(s) === 0) {
ans++;
}
}
return ans;
}
impl Solution {
pub fn count_digits(num: i32) -> i32 {
num
.to_string()
.chars()
.filter(|&c| c != '0')
.filter(|&c| num % (c.to_digit(10).unwrap() as i32) == 0)
.count() as i32
}
}