You are given a binary string s
that contains at least one '1'
.
You have to rearrange the bits in such a way that the resulting binary number is the maximum odd binary number that can be created from this combination.
Return a string representing the maximum odd binary number that can be created from the given combination.
Note that the resulting string can have leading zeros.
Example 1:
Input: s = "010" Output: "001" Explanation: Because there is just one '1', it must be in the last position. So the answer is "001".
Example 2:
Input: s = "0101" Output: "1001" Explanation: One of the '1's must be in the last position. The maximum number that can be made with the remaining digits is "100". So the answer is "1001".
Constraints:
1 <= s.length <= 100
s
consists only of'0'
and'1'
.s
contains at least one'1'
.
First, we count the number of '1's in the string
The time complexity is
class Solution:
def maximumOddBinaryNumber(self, s: str) -> str:
cnt = s.count("1")
return "1" * (cnt - 1) + (len(s) - cnt) * "0" + "1"
class Solution {
public String maximumOddBinaryNumber(String s) {
int cnt = s.length() - s.replace("1", "").length();
return "1".repeat(cnt - 1) + "0".repeat(s.length() - cnt) + "1";
}
}
class Solution {
public:
string maximumOddBinaryNumber(string s) {
int cnt = count(s.begin(), s.end(), '1');
return string(cnt - 1, '1') + string(s.size() - cnt, '0') + '1';
}
};
func maximumOddBinaryNumber(s string) string {
cnt := strings.Count(s, "1")
return strings.Repeat("1", cnt-1) + strings.Repeat("0", len(s)-cnt) + "1"
}
function maximumOddBinaryNumber(s: string): string {
const cnt = s.length - s.replace(/1/g, '').length;
return '1'.repeat(cnt - 1) + '0'.repeat(s.length - cnt) + '1';
}
impl Solution {
pub fn maximum_odd_binary_number(s: String) -> String {
let cnt = s
.chars()
.filter(|&c| c == '1')
.count();
"1".repeat(cnt - 1) + &"0".repeat(s.len() - cnt) + "1"
}
}