给你一个长度为 n
下标从 0 开始的整数数组 maxHeights
。
你的任务是在坐标轴上建 n
座塔。第 i
座塔的下标为 i
,高度为 heights[i]
。
如果以下条件满足,我们称这些塔是 美丽 的:
1 <= heights[i] <= maxHeights[i]
heights
是一个 山脉 数组。
如果存在下标 i
满足以下条件,那么我们称数组 heights
是一个 山脉 数组:
- 对于所有
0 < j <= i
,都有heights[j - 1] <= heights[j]
- 对于所有
i <= k < n - 1
,都有heights[k + 1] <= heights[k]
请你返回满足 美丽塔 要求的方案中,高度和的最大值 。
示例 1:
输入:maxHeights = [5,3,4,1,1] 输出:13 解释:和最大的美丽塔方案为 heights = [5,3,3,1,1] ,这是一个美丽塔方案,因为: - 1 <= heights[i] <= maxHeights[i] - heights 是个山脉数组,峰值在 i = 0 处。 13 是所有美丽塔方案中的最大高度和。
示例 2:
输入:maxHeights = [6,5,3,9,2,7] 输出:22 解释: 和最大的美丽塔方案为 heights = [3,3,3,9,2,2] ,这是一个美丽塔方案,因为: - 1 <= heights[i] <= maxHeights[i] - heights 是个山脉数组,峰值在 i = 3 处。 22 是所有美丽塔方案中的最大高度和。
示例 3:
输入:maxHeights = [3,2,5,5,2,3] 输出:18 解释:和最大的美丽塔方案为 heights = [2,2,5,5,2,2] ,这是一个美丽塔方案,因为: - 1 <= heights[i] <= maxHeights[i] - heights 是个山脉数组,最大值在 i = 2 处。 注意,在这个方案中,i = 3 也是一个峰值。 18 是所有美丽塔方案中的最大高度和。
提示:
1 <= n == maxHeights <= 105
1 <= maxHeights[i] <= 109
我们定义
其中
我们可以使用类似的方法求出
时间复杂度
class Solution:
def maximumSumOfHeights(self, maxHeights: List[int]) -> int:
n = len(maxHeights)
stk = []
left = [-1] * n
for i, x in enumerate(maxHeights):
while stk and maxHeights[stk[-1]] > x:
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
stk = []
right = [n] * n
for i in range(n - 1, -1, -1):
x = maxHeights[i]
while stk and maxHeights[stk[-1]] >= x:
stk.pop()
if stk:
right[i] = stk[-1]
stk.append(i)
f = [0] * n
for i, x in enumerate(maxHeights):
if i and x >= maxHeights[i - 1]:
f[i] = f[i - 1] + x
else:
j = left[i]
f[i] = x * (i - j) + (f[j] if j != -1 else 0)
g = [0] * n
for i in range(n - 1, -1, -1):
if i < n - 1 and maxHeights[i] >= maxHeights[i + 1]:
g[i] = g[i + 1] + maxHeights[i]
else:
j = right[i]
g[i] = maxHeights[i] * (j - i) + (g[j] if j != n else 0)
return max(a + b - c for a, b, c in zip(f, g, maxHeights))
class Solution {
public long maximumSumOfHeights(List<Integer> maxHeights) {
int n = maxHeights.size();
Deque<Integer> stk = new ArrayDeque<>();
int[] left = new int[n];
int[] right = new int[n];
Arrays.fill(left, -1);
Arrays.fill(right, n);
for (int i = 0; i < n; ++i) {
int x = maxHeights.get(i);
while (!stk.isEmpty() && maxHeights.get(stk.peek()) > x) {
stk.pop();
}
if (!stk.isEmpty()) {
left[i] = stk.peek();
}
stk.push(i);
}
stk.clear();
for (int i = n - 1; i >= 0; --i) {
int x = maxHeights.get(i);
while (!stk.isEmpty() && maxHeights.get(stk.peek()) >= x) {
stk.pop();
}
if (!stk.isEmpty()) {
right[i] = stk.peek();
}
stk.push(i);
}
long[] f = new long[n];
long[] g = new long[n];
for (int i = 0; i < n; ++i) {
int x = maxHeights.get(i);
if (i > 0 && x >= maxHeights.get(i - 1)) {
f[i] = f[i - 1] + x;
} else {
int j = left[i];
f[i] = 1L * x * (i - j) + (j >= 0 ? f[j] : 0);
}
}
for (int i = n - 1; i >= 0; --i) {
int x = maxHeights.get(i);
if (i < n - 1 && x >= maxHeights.get(i + 1)) {
g[i] = g[i + 1] + x;
} else {
int j = right[i];
g[i] = 1L * x * (j - i) + (j < n ? g[j] : 0);
}
}
long ans = 0;
for (int i = 0; i < n; ++i) {
ans = Math.max(ans, f[i] + g[i] - maxHeights.get(i));
}
return ans;
}
}
class Solution {
public:
long long maximumSumOfHeights(vector<int>& maxHeights) {
int n = maxHeights.size();
stack<int> stk;
vector<int> left(n, -1);
vector<int> right(n, n);
for (int i = 0; i < n; ++i) {
int x = maxHeights[i];
while (!stk.empty() && maxHeights[stk.top()] > x) {
stk.pop();
}
if (!stk.empty()) {
left[i] = stk.top();
}
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; ~i; --i) {
int x = maxHeights[i];
while (!stk.empty() && maxHeights[stk.top()] >= x) {
stk.pop();
}
if (!stk.empty()) {
right[i] = stk.top();
}
stk.push(i);
}
long long f[n], g[n];
for (int i = 0; i < n; ++i) {
int x = maxHeights[i];
if (i && x >= maxHeights[i - 1]) {
f[i] = f[i - 1] + x;
} else {
int j = left[i];
f[i] = 1LL * x * (i - j) + (j != -1 ? f[j] : 0);
}
}
for (int i = n - 1; ~i; --i) {
int x = maxHeights[i];
if (i < n - 1 && x >= maxHeights[i + 1]) {
g[i] = g[i + 1] + x;
} else {
int j = right[i];
g[i] = 1LL * x * (j - i) + (j != n ? g[j] : 0);
}
}
long long ans = 0;
for (int i = 0; i < n; ++i) {
ans = max(ans, f[i] + g[i] - maxHeights[i]);
}
return ans;
}
};
func maximumSumOfHeights(maxHeights []int) (ans int64) {
n := len(maxHeights)
stk := []int{}
left := make([]int, n)
right := make([]int, n)
for i := range left {
left[i] = -1
right[i] = n
}
for i, x := range maxHeights {
for len(stk) > 0 && maxHeights[stk[len(stk)-1]] > x {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
left[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
stk = []int{}
for i := n - 1; i >= 0; i-- {
x := maxHeights[i]
for len(stk) > 0 && maxHeights[stk[len(stk)-1]] >= x {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
right[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
f := make([]int64, n)
g := make([]int64, n)
for i, x := range maxHeights {
if i > 0 && x >= maxHeights[i-1] {
f[i] = f[i-1] + int64(x)
} else {
j := left[i]
f[i] = int64(x) * int64(i-j)
if j != -1 {
f[i] += f[j]
}
}
}
for i := n - 1; i >= 0; i-- {
x := maxHeights[i]
if i < n-1 && x >= maxHeights[i+1] {
g[i] = g[i+1] + int64(x)
} else {
j := right[i]
g[i] = int64(x) * int64(j-i)
if j != n {
g[i] += g[j]
}
}
}
for i, x := range maxHeights {
ans = max(ans, f[i]+g[i]-int64(x))
}
return
}
function maximumSumOfHeights(maxHeights: number[]): number {
const n = maxHeights.length;
const stk: number[] = [];
const left: number[] = Array(n).fill(-1);
const right: number[] = Array(n).fill(n);
for (let i = 0; i < n; ++i) {
const x = maxHeights[i];
while (stk.length && maxHeights[stk.at(-1)] > x) {
stk.pop();
}
if (stk.length) {
left[i] = stk.at(-1);
}
stk.push(i);
}
stk.length = 0;
for (let i = n - 1; ~i; --i) {
const x = maxHeights[i];
while (stk.length && maxHeights[stk.at(-1)] >= x) {
stk.pop();
}
if (stk.length) {
right[i] = stk.at(-1);
}
stk.push(i);
}
const f: number[] = Array(n).fill(0);
const g: number[] = Array(n).fill(0);
for (let i = 0; i < n; ++i) {
const x = maxHeights[i];
if (i && x >= maxHeights[i - 1]) {
f[i] = f[i - 1] + x;
} else {
const j = left[i];
f[i] = x * (i - j) + (j >= 0 ? f[j] : 0);
}
}
for (let i = n - 1; ~i; --i) {
const x = maxHeights[i];
if (i + 1 < n && x >= maxHeights[i + 1]) {
g[i] = g[i + 1] + x;
} else {
const j = right[i];
g[i] = x * (j - i) + (j < n ? g[j] : 0);
}
}
let ans = 0;
for (let i = 0; i < n; ++i) {
ans = Math.max(ans, f[i] + g[i] - maxHeights[i]);
}
return ans;
}