-
Notifications
You must be signed in to change notification settings - Fork 66
/
train.py
209 lines (168 loc) · 8.04 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import os
import torch
import torch.nn as nn
import torch.utils.data as data
from PIL import Image
from PIL import ImageFile
from tensorboardX import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from pathlib import Path
import models.transformer as transformer
import models.StyTR as StyTR
from sampler import InfiniteSamplerWrapper
from torchvision.utils import save_image
def train_transform():
transform_list = [
transforms.Resize(size=(512, 512)),
transforms.RandomCrop(256),
transforms.ToTensor()
]
return transforms.Compose(transform_list)
class FlatFolderDataset(data.Dataset):
def __init__(self, root, transform):
super(FlatFolderDataset, self).__init__()
self.root = root
print(self.root)
self.path = os.listdir(self.root)
if os.path.isdir(os.path.join(self.root,self.path[0])):
self.paths = []
for file_name in os.listdir(self.root):
for file_name1 in os.listdir(os.path.join(self.root,file_name)):
self.paths.append(self.root+"/"+file_name+"/"+file_name1)
else:
self.paths = list(Path(self.root).glob('*'))
self.transform = transform
def __getitem__(self, index):
path = self.paths[index]
img = Image.open(str(path)).convert('RGB')
img = self.transform(img)
return img
def __len__(self):
return len(self.paths)
def name(self):
return 'FlatFolderDataset'
def adjust_learning_rate(optimizer, iteration_count):
"""Imitating the original implementation"""
lr = 2e-4 / (1.0 + args.lr_decay * (iteration_count - 1e4))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_learning_rate(optimizer, iteration_count):
"""Imitating the original implementation"""
lr = args.lr * 0.1 * (1.0 + 3e-4 * iteration_count)
# print(lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_dir', default='./datasets/train2014', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style_dir', default='./datasets/Images', type=str, #wikiart dataset crawled from https://www.wikiart.org/
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str, default='./experiments/vgg_normalised.pth') #run the train.py, please download the pretrained vgg checkpoint
# training options
parser.add_argument('--save_dir', default='./experiments',
help='Directory to save the model')
parser.add_argument('--log_dir', default='./logs',
help='Directory to save the log')
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--lr_decay', type=float, default=1e-5)
parser.add_argument('--max_iter', type=int, default=160000)
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--style_weight', type=float, default=10.0)
parser.add_argument('--content_weight', type=float, default=7.0)
parser.add_argument('--n_threads', type=int, default=16)
parser.add_argument('--save_model_interval', type=int, default=10000)
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--hidden_dim', default=512, type=int,
help="Size of the embeddings (dimension of the transformer)")
args = parser.parse_args()
USE_CUDA = torch.cuda.is_available()
device = torch.device("cuda:0" if USE_CUDA else "cpu")
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
if not os.path.exists(args.log_dir):
os.mkdir(args.log_dir)
writer = SummaryWriter(log_dir=args.log_dir)
vgg = StyTR.vgg
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:44])
decoder = StyTR.decoder
embedding = StyTR.PatchEmbed()
Trans = transformer.Transformer()
with torch.no_grad():
network = StyTR.StyTrans(vgg,decoder,embedding, Trans,args)
network.train()
network.to(device)
network = nn.DataParallel(network, device_ids=[0,1])
content_tf = train_transform()
style_tf = train_transform()
content_dataset = FlatFolderDataset(args.content_dir, content_tf)
style_dataset = FlatFolderDataset(args.style_dir, style_tf)
content_iter = iter(data.DataLoader(
content_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(content_dataset),
num_workers=args.n_threads))
style_iter = iter(data.DataLoader(
style_dataset, batch_size=args.batch_size,
sampler=InfiniteSamplerWrapper(style_dataset),
num_workers=args.n_threads))
optimizer = torch.optim.Adam([
{'params': network.module.transformer.parameters()},
{'params': network.module.decode.parameters()},
{'params': network.module.embedding.parameters()},
], lr=args.lr)
if not os.path.exists(args.save_dir+"/test"):
os.makedirs(args.save_dir+"/test")
for i in tqdm(range(args.max_iter)):
if i < 1e4:
warmup_learning_rate(optimizer, iteration_count=i)
else:
adjust_learning_rate(optimizer, iteration_count=i)
# print('learning_rate: %s' % str(optimizer.param_groups[0]['lr']))
content_images = next(content_iter).to(device)
style_images = next(style_iter).to(device)
out, loss_c, loss_s,l_identity1, l_identity2 = network(content_images, style_images)
if i % 100 == 0:
output_name = '{:s}/test/{:s}{:s}'.format(
args.save_dir, str(i),".jpg"
)
out = torch.cat((content_images,out),0)
out = torch.cat((style_images,out),0)
save_image(out, output_name)
loss_c = args.content_weight * loss_c
loss_s = args.style_weight * loss_s
loss = loss_c + loss_s + (l_identity1 * 70) + (l_identity2 * 1)
print(loss.sum().cpu().detach().numpy(),"-content:",loss_c.sum().cpu().detach().numpy(),"-style:",loss_s.sum().cpu().detach().numpy()
,"-l1:",l_identity1.sum().cpu().detach().numpy(),"-l2:",l_identity2.sum().cpu().detach().numpy()
)
optimizer.zero_grad()
loss.sum().backward()
optimizer.step()
writer.add_scalar('loss_content', loss_c.sum().item(), i + 1)
writer.add_scalar('loss_style', loss_s.sum().item(), i + 1)
writer.add_scalar('loss_identity1', l_identity1.sum().item(), i + 1)
writer.add_scalar('loss_identity2', l_identity2.sum().item(), i + 1)
writer.add_scalar('total_loss', loss.sum().item(), i + 1)
if (i + 1) % args.save_model_interval == 0 or (i + 1) == args.max_iter:
state_dict = network.module.transformer.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict,
'{:s}/transformer_iter_{:d}.pth'.format(args.save_dir,
i + 1))
state_dict = network.module.decode.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict,
'{:s}/decoder_iter_{:d}.pth'.format(args.save_dir,
i + 1))
state_dict = network.module.embedding.state_dict()
for key in state_dict.keys():
state_dict[key] = state_dict[key].to(torch.device('cpu'))
torch.save(state_dict,
'{:s}/embedding_iter_{:d}.pth'.format(args.save_dir,
i + 1))
writer.close()