Skip to content
This repository has been archived by the owner on Aug 11, 2020. It is now read-only.

Latest commit

 

History

History

doc

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

MShadow Documentation

This is the documentation for mshadow: A Lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA.

Links to Topics

Expression API

Expression is the key concept in mshadow, a common operation of mshadow is tensor = some code to construct expression

There are three major types of expression:

  • Mapper expression: only contain element-wise operations of Mapper expressions
    • Mapper expression can used as composition component of other operations.
    • Tensor, scalar are Mapper expressions
    • Example: weight = - eta * (grad + lambda * weight) is a Mapper expression.
    • Mapper expressions are translated using expression template code implemented by mshadow.
    • Assign safety: Element-wise mapping are assign safe, which means, we can write A = A * 2 + B, making lvalue appear in expression, the results are still correct.
  • Chainer expression: may contain element-wise operation such as reduction and broadcast
    • Example: dst = mirror(src) is a chainer expression
    • Assign safety: Most of the chainer extensions are not assignment safe, which means user should avoid putting target in source epression.
  • Complex expression: complex operations, need special translation rule to translate to specific implementations.
    • Complex expression can not be used as composition component of other operations.
    • Example: dot(lhs.T(), rhs), is complex expression, we can not write dst = 1.0 + dot(lhs.T(), rhs)
    • But limited syntax is supported depending on specification, for example, we do support dst += 2.0f * dot(lhs.T(), rhs)
    • Complex expressions are translated into specific implementations such as BLAS.

Element-wise Operations

The basic binary operators are overloaded to composite Mapper expressions, so we can write

weight = (-eta) * (grad + lambda * weight);

We can also use customized binary operators, and unary operators:

struct maximum {
  MSHADOW_XINLINE static float Map(float a, float b) {
    return a > b ? a : b;
  }
};
template<typename xpu>
void ExampleMaximum(Tensor<xpu, 2> out,
                    const Tensor<xpu, 2> &A,
                    const Tensor<xpu, 2> &B) {
  out= 10.0f * F<maximum>(A+1.0f, B); 
}
struct sigmoid {
  MSHADOW_XINLINE static float Map(float a) {
    return 1.0f/(1.0f+expf(-a));
  }
};
template<typename xpu>
void ExampleSigmoid(Tensor<xpu, 2> out, const Tensor<xpu, 2> &in) {
  // equivalent to out = sigmoid(in*2) + 1; 
  out = F<op::plus>(F<sigmoid>(in * 2.0f), ScalarExp(1.0f));
}

Matrix Multiplications

Matrix multiplications are supported by following syntax, with things brackets [] are optional

dst <sv> [scale*] dot(lhs [.T()] , rhs [.T()]), <sv> can be =,+=,-=

Example:

template<typename xpu>
void Backprop(Tensor<xpu, 2> gradin,
              const Tensor<xpu, 2> &gradout,
              const Tensor<xpu, 2> &netweight) {
  gradin = 2.0 * dot(gradout, netweight.T());
}

Introducing Expression Extensions

Naming conventions:

  • Tensor<xpu, dim> to refer to any Tensor with device any device and dimension.
  • xpu, dim, are implicit template parameters.
  • Expr<xpu, dim> will be used to refer to any mapper expression with type Tensor<xpu,dim>.

List of functions:

  • reshape: reshapes a tensor to another shape, number of content must be same
  • broadcast<?>: replicate a 1 dimension tensor in certain dimension
  • repmat, special case of broadcast<0>: repeat vector over rows to form a matrix
  • sumall_except_dim<?>: sum over all the dimensions, except the dimension specified in template parameter
  • sum_rows: special case of sumall_except_dim<0>, sum of rows in the matrix
  • unpack_patch2col: unpack local (overlap) patches of image to column of mat, can be used to implement convolution
  • pack_col2patch: reverse operation of unpack_patch2col, can be used to implement deconvolution
  • pool: do pooling on image
  • unpool: get gradient of pooling result
  • crop: crop the original image to a smaller size
  • mirror: get the mirrored result of input expression

======

reshape
  • reshape(Expr<xpu,dim> src, Shape<dimdst> oshape)
  • reshapes a tensor to another shape, total number of elements must be same
  • parameters:
    • src: input data
    • oshape: target shape
  • result expression type: Tensor<xpu, dimdst> with shape=oshape, is Mapper expression
void ExampleReshape(void) {
  Tensor<cpu, 2> dst = NewTensor<cpu>(Shape2(4, 5));
  Tensor<cpu, 1> src = NewTensor<cpu>(Shape1(20), 1.0f); 
  dst = reshape(src, dst.shape_);
  ...
}

======

broadcast
  • broadcast<dimcast>(Tensor<xpu,1> src, Shape<dimdst> oshape)
  • replicate a 1 dimension tensor certain dimension, specified by template parameter dimcast
  • parameters:
    • src: input 1 dimensional tensor
    • oshape: shape of output
  • return expression type: Tensor<xpu, dimdst>, shape = oshape, is Chainer expression
void ExampleBroadcast(void) {
  Tensor<cpu, 2> dst = NewTensor<cpu>(Shape2(2, 3));
  Tensor<cpu, 1> src = NewTensor<cpu>(Shape1(2), 1.0f);
  src[0] = 2.0f; src[1] = 1.0f;
  dst = broadcast<0>(src, dst.shape_);
  // dst[0][0] = 2, dst[0][1] = 2; dst[1][0]=1, dst[1][1] = 1
  ...
}

======

repmat
  • repmat(Tensor<xpu, 1> src, int nrows)
  • special case of broadcast, repeat 1d tensor over rows
  • input parameters:
    • src: input vector
    • nrows: number of rows in target
  • return expression type: Tensor<xpu, 2>, with shape=(nrows, src.size(0)), is Chainer expression
void ExampleRepmat(void) {
  Tensor<cpu,2> dst = NewTensor<cpu>(Shape2(3, 2));
  Tensor<cpu,1> src = NewTensor<cpu>(Shape1(2), 1.0f);
  src[0] = 2.0f; src[1] = 1.0f;
  dst = repmat(src, 3);
  // dst[0][0] = 2, dst[0][1] = 1; dst[1][0]=2, dst[1][1] = 1
  ...
}

======

sumall_except_dim
  • sumall_except_dim<dimkeep>(Expr<xpu,dim> src)
  • sum over all dimensions, except dimkeep
  • input parameters:
    • src: input mapper expression
  • return expression type: Tensor<xpu, 1>, with shape=(src.size(dimkeep)), is Complex expression
  • Syntax: ```dst [sv] [scale*] sumall_except_dim(src) , can be =, +=, -=, *=, /=````
void ExampleSumAllExceptDim(void) {
  Tensor<cpu,3> src = NewTensor<cpu>(Shape3(2, 3, 2), 1.0f);
  Tensor<cpu,1> dst = NewTensor<cpu>(Shape1(3), 1.0f);
  dst += sum_all_except<1>(src * 2.0f);
  // dst[0] = 1.0 + 4.0 *2.0 = 9.0
  ...
}

======

sum_rows
  • sum_rows(Expr<xpu, 2> src)
  • sum of rows in the matrix
  • input parameters:
    • src: input mapper expression
  • return expression type: Tensor<xpu,1>, with shape=(src.size(0)), is Complex expression
  • Syntax: ```dst [sv] [scale*] sum_rows(src) , can be =,+=,-=,*=,/=````
void ExampleSumRows(void) {
  Tensor<cpu, 2> src = NewTensor<cpu>(Shape2(3, 2), 1.0f);
  Tensor<cpu, 1> dst = NewTensor<cpu>(Shape1(2), 1.0f);
  dst += sum_rows(src + 1.0f);
  // dst[0] = 1.0 + 3.0 *(1.0+1.0) = 7.0
  ...
}

======

unpack_patch2col
  • unpack_patch2col(Expr<xpu,3> img, int psize_y, int p_size_x, int pstride)
  • unpack local (overlap) patches of image to column of mat, can be used to implement convolution, after getting unpacked mat, we can use: output = dot(weight, mat) to get covolved results, the relations:
    • weight; shape[0]: out_channel, shape[1]: ichannel * psize_y * psize_x
    • output; shape[0]: out_channel, shape[1]: out_height * out_width * num_of_images
    • out_height = (in_height - psize_y) / pstride + 1, this means we pad inperfect patch with 0
    • out_width = (in_width - psize_x) / pstride + 1
  • input parameters:
    • img: source image, can be expression; (in_channels, in_height, in_width)
    • psize_y height of each patch
    • psize_x width of each patch
    • pstride: stride of each patch
  • return expression type: Tensor<xpu, 2>, with shape=(in_channel*psize_x*psize_y, out_height*out_width), is Chainer expression
void ExampleCovolution(Tensor<cpu, 3> dst, Tensor<cpu, 3> src,
                       Tensor<cpu, 2> weight, int ksize, int stride) {
  int o_height = (src.size(1)- ksize) / stride + 1;
  int o_width  = (src.size(2)- ksize) / stride + 1;
  utils::Assert(weight.size(1) == src.size(0) * ksize * ksize);
  TensorContainer<cpu, 2> tmp_col(Shape2(src.size(0) * ksize * ksize,
                                         o_height * o_width)); 
  TensorContainer<cpu, 2> tmp_dst(Shape2(weight.size(0),
                                         o_height * o_width)); 
  tmp_col = unpack_patch2col(src, ksize, ksize, stride);
  tmp_dst = dot(weight, tmp_col);
  dst = reshape(tmp_dst, dst.shape_);
}

======

pack_col2patch
  • ```pack_col2patch(Tensor<xpu, 2> mat, Shape<3> imshape, int psize_y, int psize_x, int pstride) ````
  • reverse operation of unpack_patch2col, can be used to implement deconvolution
  • input parameters:
    • mat: source mat, same shape as output of unpack_patch2col
    • imshape: shape of target image
    • psize_y height of each patch
    • psize_x width of each patch
    • pstride: stride of each patch
  • return expression type: Tensor<xpu, 3>, with shape = imshape, is Chainer expression
void ExampleDecovolution(Tensor<cpu, 3> bottom, Tensor<cpu, 3> top,
                         Tensor<cpu, 2> weight, int ksize, int stride) {
  int o_height = (bottom.size(1)- ksize) / stride + 1;
  int o_width  = (bottom.size(2)- ksize) / stride + 1;
  utils::Assert(weight.size(1) == bottom.size(0) * ksize * ksize);
  TensorContainer<cpu, 2> tmp_col(Shape2(bottom.size(0) * ksize * ksize,
                                         o_height * o_width)); 
  TensorContainer<cpu, 2> tmp_dst(Shape2(weight.size(0), o_height*o_width)); 
  tmp_dst = reshape(top, tmp_dst.shape_);
  tmp_col = dot(weight.T(), tmp_dst);
  bottom = pack_col2patch(tmp_col, bottom.shape_, ksize, ksize, stride);
}

======

pool
  • pool<Reducer>(Expr<xpu, dim> img, [Shape<2> pshape,] int ksize_y, int ksize_x, int kstride)
  • Pooling on image with specify kernel size and stride, can be used to implement max pooilng and other pooling layer
  • input parameters:
    • Reducer: operation can be max or sum
    • img: source image, can be expression; (in_channels, in_height, in_width)
    • [optional] Shape<2> pshape, output shape
    • ksize_y height of each patch
    • ksize_x width of each patch
    • kstride: stride of each patch
  • return expression: Expr<xpu, dim>, with shape = (in_channel, (out_height - ksize) / kstride + 1, (out_width - ksize) / kstride + 1), or expression in pshape
    • Chainer expression
void ExampleMaxPooling(TensorContainer<cpu, 3> &data, int ksize, int stride) {
  TensorContainer<cpu, 3> pooled(Shape3(data.size(0),
                                        (data.size(2) - ksize) / kstride + 1), 
                                        (data.size(1) - ksize) / kstride + 1));
  pooled = pool<red::maximum>(data, ksize, ksize, stride);
}

======

unpool
  • unpool<Reducer>(Tensor<xpu, 4> data_src, Tensor<xpu, 4> data_pooled, Tensor<xpu, 4> grad_pooled, int ksize_y, int ksize_x, int kstride)
  • Unpooling on image with specify kernel size and stride, can be used to implement backprop of max pooilng and other pooling layer
  • input parameters:
    • Reducer: operation can be max or sum
    • data_src: source image batch.
    • data_pooled: pooled image batch.
    • grad_pooled: gradient of upper layer
    • ksize_y height of each patch
    • ksize_x width of each patch
    • kstride: stride of each patch
  • return: Expression, same shape to data_src
void ExampleMaxUnpooling(Tensor<cpu, 4> &data_src, Tensor<cpu, 4> &data_pooled, 
                         Tensor<cpu, 4> &grad_pooled, int ksize, int kstride) {
  TensorContainer<cpu, 4> grad(data_src.shape_);
  grad = unpool<red::maximum>(data_src, data_pooled,
                              grad_pooled, ksize, ksize, kstride);
}

======

crop
  • crop(Expr<xpu, dim> src, Shape<2> oshape, int start_height, int start_width)
  • input parameters:
  • src: input expression
  • oshape: output shape after crop
  • start_height: start height for cropping
  • start_width: start width for cropping
  • Can also be crop(Expr<xpu, dim> src, Shape<2> oshape) where the crop will happen in center.
  • return
  • cropped expression
void ExampleCrop(TensorContainer<cpu, 3> img, int start_height, int start_width) {
  TensorContainer<cpu> cropped(Shape3(img.size(0),
                                      img.size(1) - start_height,
                                      img.size(2) - start_width));
  cropped = crop(img, start_height, start_width);
}

======

mirror
  • mirrow(Expr<xpu, dim> src)
  • input:
    • src, source expression to be mirrored
  • output:
    • expression of mirrored result
void ExampleMirror(TensorContainer<cpu, 3> img) {
  TensorContainer<cpu> mirrored(img.shape_);
  mirrored = mirror(img);
}