-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathloop_partition.cc
625 lines (566 loc) · 20.9 KB
/
loop_partition.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2017 by Contributors
* \file loop_partition.cc
*/
#include <tvm/ir.h>
#include <tvm/ir_visitor.h>
#include <tvm/ir_mutator.h>
#include <tvm/ir_pass.h>
#include <tvm/arithmetic.h>
#include <unordered_map>
#include <unordered_set>
#include "../arithmetic/int_set.h"
#include "../runtime/thread_storage_scope.h"
namespace tvm {
namespace ir {
using arith::IntSet;
using arith::DeduceBound;
using arith::Intersect;
using PartitionKey = std::pair<const Node*, bool>;
struct PartitionKeyHash {
std::size_t operator()(PartitionKey const& k) const noexcept {
std::size_t h1 = std::hash<const Node*>{}(k.first);
std::size_t h2 = std::hash<bool>{}(k.second);
return h1 ^ h2;
}
};
// Each mapping (cond, cond_value) -> interval represents the fact that
// condition cond is proven to have value cond_value (true or false) in interval.
using Partition = std::unordered_map<PartitionKey, IntSet, PartitionKeyHash>;
bool ExprUseVars(Expr expr, const std::unordered_set<const Variable*>& vars) {
bool success = false;
PostOrderVisit(expr, [&vars, &success](const NodeRef& node) {
if (const Variable* v = node.as<Variable>()) {
if (vars.count(v)) {
success = true;
return;
}
}
});
return success;
}
// Select potential candidate IRs that can be partitioned.
// Rule:
// - the range should not be const
// - there exist a condition expression in the scope that use the var
class CandidateSelector final : public IRVisitor {
public:
using VarIsUsed = bool;
explicit CandidateSelector(bool split_const_loop)
: split_const_loop_(split_const_loop) {}
void Visit_(const For* op) {
// partition const loop when sets split_const_loop_
if (!is_const(op->min) || !is_const(op->extent) || split_const_loop_) {
const Variable* var = op->loop_var.get();
record_.insert({var, false});
IRVisitor::Visit_(op);
if (record_.at(var) && !no_split_) {
candidates.insert(op);
}
record_.erase(var);
} else {
IRVisitor::Visit_(op);
}
}
void Visit_(const AttrStmt* op) {
if (op->attr_key == attr::thread_extent) {
const IterVarNode *iv = op->node.as<IterVarNode>();
CHECK(iv);
Var var = iv->var;
runtime::ThreadScope scope = runtime::ThreadScope::make(iv->thread_tag);
if ((scope.rank == 0) && (!is_const(op->value) || split_const_loop_)) {
record_.insert({var.get(), false});
IRVisitor::Visit_(op);
if (record_.at(var.get()) && !no_split_) {
candidates.insert(op);
}
record_.erase(var.get());
return;
}
}
IRVisitor::Visit_(op);
}
void Visit_(const Block* op) {
bool temp = no_split_;
this->Visit(op->first);
// erase the no split state of first when visit rest.
std::swap(temp, no_split_);
this->Visit(op->rest);
// restore the no split flag.
no_split_ = no_split_ || temp;
}
void Visit_(const Call* op) {
if (op->is_intrinsic(Call::likely)) {
in_likely_ = true;
IRVisitor::Visit_(op);
in_likely_ = false;
} else if (op->is_intrinsic(intrinsic::tvm_thread_allreduce)) {
// no split if the body contains allreduce.
no_split_ = true;
return;
} else {
IRVisitor::Visit_(op);
}
}
void Visit_(const Variable* op) {
if (in_likely_ && record_.count(op)) {
record_.at(op) = true;
}
}
std::unordered_set<const Node*> candidates;
private:
bool in_likely_{false};
bool no_split_{false};
bool split_const_loop_{false};
std::unordered_map<const Variable*, VarIsUsed> record_;
};
// Populate partitions data structure, i.e., for a specific variable,
// find an interval in which each condition
// (currently, "likely" conditions) has fixed true or false value
class PartitionFinder : public IRVisitor {
public:
explicit PartitionFinder(VarExpr current_var,
const std::unordered_map<const Variable*, IntSet>& hint_map,
const std::unordered_map<const Variable*, IntSet>& relax_map)
: current_var_(current_var), hint_map_(hint_map), relax_map_(relax_map) {
for (const auto& kv : hint_map) {
out_vars_.insert(kv.first);
}
for (const auto& kv : relax_map) {
out_vars_.insert(kv.first);
}
}
void Visit_(const For* op) {
if (ExprUseVars(op->min, out_vars_) || ExprUseVars(op->extent, out_vars_)) return;
const Variable* var = op->loop_var.get();
hint_map_.insert({var, IntSet::interval(op->min, op->min + op->extent - 1)});
relax_map_.insert({var, IntSet::interval(op->min, op->min + op->extent - 1)});
IRVisitor::Visit_(op);
relax_map_.erase(var);
hint_map_.erase(var);
}
void Visit_(const AttrStmt* op) {
// handle thread_axis
if (op->attr_key == attr::thread_extent) {
const IterVarNode* thread_axis = op->node.as<IterVarNode>();
CHECK(thread_axis);
const Variable* var = thread_axis->var.get();
IntSet dom = IntSet::range(Range(make_zero(op->value.type()), op->value));
hint_map_.insert({var, dom});
relax_map_.insert({var, dom});
IRVisitor::Visit_(op);
relax_map_.erase(var);
hint_map_.erase(var);
} else {
IRVisitor::Visit_(op);
}
}
void Visit_(const Call* op) {
if (op->is_intrinsic(Call::likely)) {
Expr cond = op->args[0];
if (ExprUseVars(cond,
std::unordered_set<const Variable*>({current_var_.get()}))) {
// For cond, find out the interval, if exists, in which we can prove that cond is
// true. Also find the interval, if exists, in which we can prove that cond is
// false.
IntSet interval =
DeduceBound(current_var_, cond, hint_map_, relax_map_);
if (!interval.is_nothing()) {
// cond is true within interval
partitions[{cond.get(), true}] = interval;
}
Expr inverse_cond = InverseCond(cond);
if (inverse_cond.defined()) {
IntSet interval =
DeduceBound(current_var_, inverse_cond, hint_map_, relax_map_);
if (!interval.is_nothing()) {
// cond is false within interval
partitions[{cond.get(), false}] = interval;
}
}
}
} else {
IRVisitor::Visit_(op);
}
}
Partition partitions;
private:
Expr InverseCond(const Expr& cond) {
Expr inverse_cond;
if (const LT* op = cond.as<LT>()) {
// a < b -> a >= b
inverse_cond = GE::make(op->a, op->b);
} else if (const GT* op = cond.as<GT>()) {
// a > b -> a <= b
inverse_cond = LE::make(op->a, op->b);
} else if (const LE* op = cond.as<LE>()) {
// a <= b -> a > b
inverse_cond = GT::make(op->a, op->b);
} else if (const GE* op = cond.as<GE>()) {
// a >= b -> a < b
inverse_cond = LT::make(op->a, op->b);
} else if (const EQ* op = cond.as<EQ>()) {
// a == b -> a != b
inverse_cond = NE::make(op->a, op->b);
// a != b -> a == b
} else if (const NE* op = cond.as<NE>()) {
inverse_cond = EQ::make(op->a, op->b);
}
return inverse_cond;
}
VarExpr current_var_;
std::unordered_set<const Variable*> out_vars_;
std::unordered_map<const Variable*, IntSet> hint_map_;
std::unordered_map<const Variable*, IntSet> relax_map_;
};
// Replace the set of conditions given by ps with cond_value (true or false)
class ConditionEliminator : public IRMutator {
public:
explicit ConditionEliminator(const std::unordered_set<const Node*>& ps, bool cond_value = true)
: ps_(ps), cond_value_(cond_value) {}
using IRMutator::Mutate;
Expr Mutate(Expr e) final {
if (ps_.find(e.get()) != ps_.end()) {
return Mutate(cond_value_ ? const_true() : const_false());
}
return IRMutator::Mutate(e);
}
private:
std::unordered_set<const Node*> ps_;
bool cond_value_;
};
// Insert the partition branch at the innermost thread scope
class ThreadPartitionInserter : public IRMutator {
public:
explicit ThreadPartitionInserter(const std::unordered_set<const Node*>& ps,
Expr cond) : ps_(ps), cond_(cond), innermost_thread_scope_(false) {}
Stmt Mutate_(const AttrStmt* op, const Stmt& s) final {
if (op->attr_key == attr::thread_extent) {
innermost_thread_scope_ = true;
Stmt stmt = IRMutator::Mutate_(op, s);
// add branch code inside the innermost thread scope
if (innermost_thread_scope_) {
Stmt simplified_body = ConditionEliminator(ps_).Mutate(op->body);
Stmt body = IfThenElse::make(cond_, simplified_body, op->body);
Expr value = this->Mutate(op->value);
stmt = AttrStmt::make(op->node, op->attr_key, value, body);
}
innermost_thread_scope_ = false;
return stmt;
} else {
return IRMutator::Mutate_(op, s);
}
}
private:
const std::unordered_set<const Node*>& ps_;
Expr cond_;
bool innermost_thread_scope_;
};
// Try to partition range of iteration variables in order to remove (some)
// likely conditions
class LoopPartitioner : public IRMutator {
public:
explicit LoopPartitioner(bool split_const_loop)
: selector(CandidateSelector(split_const_loop)) {}
Stmt VisitAndMutate(const Stmt& stmt) {
selector.Visit(stmt);
return Mutate(stmt);
}
Stmt Mutate_(const For* op, const Stmt& stmt) {
if (selector.candidates.count(op)) {
Stmt s = TryPartition(op, stmt, op->loop_var,
op->min, op->min + op->extent - 1, op->body, false);
if (s.defined()) return s;
}
// normal path when loop partition fails
// normal loop variable can be put into hint map.
hint_map_.insert({op->loop_var.get(),
IntSet::interval(op->min, op->min + op->extent - 1)});
Stmt res = IRMutator::Mutate_(op, stmt);
hint_map_.erase(op->loop_var.get());
return res;
}
Stmt Mutate_(const AttrStmt* op, const Stmt& stmt) {
if (op->attr_key != attr::thread_extent) {
return IRMutator::Mutate_(op, stmt);
}
const IterVarNode *iv = op->node.as<IterVarNode>();
CHECK(iv);
Var var = iv->var;
if (selector.candidates.count(op)) {
Stmt s = TryPartition(op, stmt, var, 0, op->value - 1, op->body, true);
if (s.defined()) return s;
}
// normal path when loop parittion fails.
runtime::ThreadScope scope = runtime::ThreadScope::make(iv->thread_tag);
Stmt res;
if (scope.rank == 1) {
// threadIdx should be put into relax map, in case of divergence.
relax_map_.insert({var.get(),
IntSet::interval(make_zero(var.type()), op->value - 1)});
res = IRMutator::Mutate_(op, stmt);
relax_map_.erase(var.get());
} else {
hint_map_.insert({var.get(),
IntSet::interval(make_zero(var.type()), op->value - 1)});
res = IRMutator::Mutate_(op, stmt);
hint_map_.erase(var.get());
}
return res;
}
private:
Stmt TryPartition(const Node* op, const Stmt& stmt, VarExpr var,
Expr min, Expr max, Stmt body, bool partition_thread_scope);
std::pair<IntSet, std::unordered_set<const Node*>>
GetIntervalAndCondset(const Partition &partitions,
const arith::IntervalSet &for_interval,
bool cond_value);
inline Stmt MakeFor(const Node* op, Expr extent, Stmt body);
/* Candidate IRs that may be partitioned potentially */
std::unordered_map<const Variable*, IntSet> hint_map_;
std::unordered_map<const Variable*, IntSet> relax_map_;
arith::Analyzer analyzer_;
CandidateSelector selector;
};
// Returns an interval (in the first component) in which all the conditions
// given in the second component provably have value given by cond_value
std::pair<IntSet, std::unordered_set<const Node*>>
LoopPartitioner::GetIntervalAndCondset(const Partition &partitions,
const arith::IntervalSet &for_interval,
bool cond_value) {
Array<IntSet> sets;
std::unordered_set<const Node*> cond_set;
for (const auto &kv : partitions) {
if (kv.first.second == cond_value) {
arith::IntervalSet interval = Downcast<arith::IntervalSet>(kv.second);
arith::IntervalSet intersection = arith::Intersect(
&analyzer_, interval, for_interval);
if (!intersection->IsEmpty()) {
sets.push_back(kv.second);
cond_set.insert(kv.first.first);
}
}
}
IntSet interval = sets.empty() ? IntSet::nothing() : Intersect(sets);
return std::make_pair(interval, cond_set);
}
Stmt AppendStmts(const Stmt& a, const Stmt& b) {
if (!a.defined()) {
return b;
} else if (!b.defined()) {
return a;
} else {
return Block::make(a, b);
}
}
/*
* Tries to recursively partition the range of the variable (given by var) of
* the for loop (given by node and stmt) into a
* number of disjoint ranges such that in some ranges one or more predicates
* in the loopnest are provably true or false in each range. For example, given the
* following loop to partition:
* for (i = 0; i < 4; i++)
* for (j = 0; j < 10; j++)
* if (likely(i*10 + j < 36))
* A[10*i+j] = B[10*i+j]
*
* We first partition range of i, i.e., [0,3] into subranges [0,2] and [3,3] because the
* likely condition is always true for the first subrange but not always true for the
* second subrange. Therefore, we'll have
* for (i = 0; i < 3; i++)
* for (j = 0; j < 10; j++)
* if (likely(1))
* A[10*i+j] = B[10*i+j]
* for (i = 0; i < 1; i++)
* for (j = 0; j < 10; j++)
* if (likely((i+3)*10 + j < 36))
* A[10*(i+3)+j] = B[10*(i+3)+j]
* Which is simplified as:
* for (i = 0; i < 3; i++)
* for (j = 0; j < 10; j++)
* A[10*i+j] = B[10*i+j]
* for (j = 0; j < 10; j++) // loopnest 1
* if (likely(j < 6))
* A[30+j] = B[30+j]
* Now, we recursively partition j in loopnest 1 into subranges [0,5] and [6,9] where the
* condition is true for the first subrange and now always true for the second subrange.
* for (j = 0; j < 6; j++)
* if (likely(1))
* A[30+j] = B[30+j]
* for (j = 0; j < 4; j++) // loop 2
* if (likely(j < 0))
* A[36+j] = B[36+j]
* Finally we recursively partition loop 2 above into subrange [0,3] where the
* condition is false and empty interval where the condition is not false,
* therefore we generate
* for (j = 0; j < 4; j++)
* if (likely(0))
* A[36+j] = B[36+j]
* which will eventually be simplified to empty code. And because only one loop was generated
* from loop 2 we stop recursing.
*/
Stmt LoopPartitioner::TryPartition(const Node* node,
const Stmt& stmt,
VarExpr var,
Expr min,
Expr max,
Stmt body,
bool partition_thread_scope) {
using namespace arith;
// include hint of var.
hint_map_.insert({var.get(), IntSet::interval(min, max)});
PartitionFinder finder(var, hint_map_, relax_map_);
finder.Visit(body);
hint_map_.erase(var.get());
if (finder.partitions.empty()) return Stmt();
arith::IntervalSet for_interval(min, max);
bool cond_value;
IntSet middle_interval;
std::unordered_set<const Node*> cond_set;
// find an interval in which all conditions on var are true
std::tie(middle_interval, cond_set) =
GetIntervalAndCondset(finder.partitions, for_interval, true);
if (middle_interval.is_nothing()) {
// if such interval doesn't exist, find an interval in which all
// conditions on var are false
std::tie(middle_interval, cond_set) =
GetIntervalAndCondset(finder.partitions, for_interval, false);
if (middle_interval.is_nothing())
// we couldn't find an interval in which the conditions are provably true or false
// Therefore, we can't partition the loop based on those conds
return Stmt();
cond_value = false;
} else {
cond_value = true;
}
IntervalSet middle_interval_i = Downcast<IntervalSet>(middle_interval);
// middle_interval is the subrange of the loop variable range for which a
// set of conditions are true (or false resp.)
// The part of the loop variable range that is before (after resp.) that
// subrange is prefixed with pre- (post- resp.)
// Calculating pre-subrange and generating code for it.
// pre-subrange = [min, body_begin)
Expr body_begin;
Stmt pre_stmt;
bool pre_stmt_recurse = true;
if (middle_interval_i->HasLowerBound()) {
body_begin = ir::Simplify(middle_interval.min());
Expr cond = (body_begin - min >= 0);
if (!analyzer_.CanProve(cond)) {
LOG(WARNING) << "Cannot prove: " << cond
<< ", when generating the pre doubt loop";
body_begin = Max::make(body_begin, min);
// stop recursing on this interval if we can't prove it has non-negative length
pre_stmt_recurse = false;
}
if (!partition_thread_scope) {
Stmt pre_body = Substitute(body, {{Var{var}, var + min}});
pre_stmt = MakeFor(node, body_begin - min, pre_body);
}
} else {
body_begin = min;
}
// Calculating post-subrange and generating code for it.
// post-subrange = [post_doubt_begin, max+1)
Expr post_doubt_begin;
Stmt post_stmt;
bool post_stmt_recurse = true;
if (middle_interval_i->HasUpperBound()) {
post_doubt_begin = ir::Simplify(middle_interval.max() + 1);
// require the extent to be non-negative
Expr cond = (max - post_doubt_begin + 1 >= 0);
if (!analyzer_.CanProve(cond)) {
LOG(WARNING) << "Cannot prove: " << cond
<< ", when generating the post doubt loop";
post_doubt_begin = Min::make(post_doubt_begin, max+1);
// stop recursing on this interval if we can't prove it has non-negative length
post_stmt_recurse = false;
}
if (!partition_thread_scope) {
Stmt post_body =
Substitute(body, {{Var{var}, var + post_doubt_begin}});
post_stmt = MakeFor(node, max - post_doubt_begin + 1, post_body);
}
} else {
post_doubt_begin = max + 1;
}
Stmt s;
// Generating code for middle subrange
if (!partition_thread_scope) {
Stmt mid_stmt;
if (!analyzer_.CanProve(body_begin >= post_doubt_begin)) {
// [body_begin, post_doubt_begin)
Stmt simplified_body = ConditionEliminator(cond_set, cond_value).Mutate(body);
Stmt new_body = Substitute(simplified_body, {{Var{var}, var + body_begin}});
mid_stmt = MakeFor(node, post_doubt_begin - body_begin, new_body);
// Recurse for each non-empty subrange only if there are at least
// two non-empty subranges
if (pre_stmt.defined() || post_stmt.defined()) {
mid_stmt = VisitAndMutate(mid_stmt);
if (pre_stmt.defined() && pre_stmt_recurse) {
pre_stmt = VisitAndMutate(pre_stmt);
}
if (post_stmt.defined() && post_stmt_recurse) {
post_stmt = VisitAndMutate(post_stmt);
}
}
}
s = AppendStmts(pre_stmt, mid_stmt);
s = AppendStmts(s, post_stmt);
} else {
Expr cond = const_true();
if (!analyzer_.CanProve(body_begin == min)) cond = cond && (var >= body_begin);
if (!analyzer_.CanProve(post_doubt_begin == (max + 1))) cond = cond && (var < post_doubt_begin);
s = ThreadPartitionInserter(cond_set, cond).Mutate(stmt);
}
s = ConvertSSA(s);
return s;
}
inline Stmt LoopPartitioner::MakeFor(const Node *node, Expr extent, Stmt body) {
const For *for_node = static_cast<const For*>(node);
CHECK(for_node);
if (analyzer_.CanProve(extent == make_const(Int(32), 1))) {
// If the loop extent is 1, do not create the loop anymore
return Substitute(body, {{Var{for_node->loop_var}, make_const(Int(32), 0)}});
} else {
return For::make(for_node->loop_var, 0, extent,
for_node->for_type, for_node->device_api, body);
}
}
class RemoveLikelyTags : public IRMutator {
public:
using IRMutator::Mutate;
Expr Mutate_(const Call *op, const Expr& e) {
if (op->is_intrinsic(Call::likely)) {
CHECK_EQ(op->args.size(), 1);
return IRMutator::Mutate(op->args[0]);
} else {
return IRMutator::Mutate_(op, e);
}
}
};
Stmt LoopPartition(Stmt stmt, bool split_const_loop) {
stmt = LoopPartitioner(split_const_loop).VisitAndMutate(stmt);
stmt = RemoveLikelyTags().Mutate(stmt);
return stmt;
}
} // namespace ir
} // namespace tvm