-
Notifications
You must be signed in to change notification settings - Fork 618
/
Copy pathraft.go
2158 lines (1869 loc) · 63.4 KB
/
raft.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
package raft
import (
"context"
"fmt"
"io"
"math"
"math/rand"
"net"
"os"
"runtime"
"sync"
"sync/atomic"
"time"
"code.cloudfoundry.org/clock"
"github.com/docker/go-events"
"github.com/docker/go-metrics"
"github.com/gogo/protobuf/proto"
"github.com/moby/swarmkit/v2/api"
"github.com/moby/swarmkit/v2/ca"
"github.com/moby/swarmkit/v2/log"
"github.com/moby/swarmkit/v2/manager/raftselector"
"github.com/moby/swarmkit/v2/manager/state"
"github.com/moby/swarmkit/v2/manager/state/raft/membership"
"github.com/moby/swarmkit/v2/manager/state/raft/storage"
"github.com/moby/swarmkit/v2/manager/state/raft/transport"
"github.com/moby/swarmkit/v2/manager/state/store"
"github.com/moby/swarmkit/v2/watch"
"github.com/pkg/errors"
"github.com/sirupsen/logrus"
"go.etcd.io/etcd/pkg/v3/idutil"
"go.etcd.io/etcd/raft/v3"
"go.etcd.io/etcd/raft/v3/raftpb"
"golang.org/x/time/rate"
"google.golang.org/grpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/peer"
"google.golang.org/grpc/status"
)
var (
// ErrNoRaftMember is thrown when the node is not yet part of a raft cluster
ErrNoRaftMember = errors.New("raft: node is not yet part of a raft cluster")
// ErrConfChangeRefused is returned when there is an issue with the configuration change
ErrConfChangeRefused = errors.New("raft: propose configuration change refused")
// ErrApplyNotSpecified is returned during the creation of a raft node when no apply method was provided
ErrApplyNotSpecified = errors.New("raft: apply method was not specified")
// ErrSetHardState is returned when the node fails to set the hard state
ErrSetHardState = errors.New("raft: failed to set the hard state for log append entry")
// ErrStopped is returned when an operation was submitted but the node was stopped in the meantime
ErrStopped = errors.New("raft: failed to process the request: node is stopped")
// ErrLostLeadership is returned when an operation was submitted but the node lost leader status before it became committed
ErrLostLeadership = errors.New("raft: failed to process the request: node lost leader status")
// ErrRequestTooLarge is returned when a raft internal message is too large to be sent
ErrRequestTooLarge = errors.New("raft: raft message is too large and can't be sent")
// ErrCannotRemoveMember is thrown when we try to remove a member from the cluster but this would result in a loss of quorum
ErrCannotRemoveMember = errors.New("raft: member cannot be removed, because removing it may result in loss of quorum")
// ErrNoClusterLeader is thrown when the cluster has no elected leader
ErrNoClusterLeader = errors.New("raft: no elected cluster leader")
// ErrMemberUnknown is sent in response to a message from an
// unrecognized peer.
ErrMemberUnknown = errors.New("raft: member unknown")
// work around lint
lostQuorumMessage = "The swarm does not have a leader. It's possible that too few managers are online. Make sure more than half of the managers are online."
errLostQuorum = errors.New(lostQuorumMessage)
// Timer to capture ProposeValue() latency.
proposeLatencyTimer metrics.Timer
)
// LeadershipState indicates whether the node is a leader or follower.
type LeadershipState int
const (
// IsLeader indicates that the node is a raft leader.
IsLeader LeadershipState = iota
// IsFollower indicates that the node is a raft follower.
IsFollower
// lostQuorumTimeout is the number of ticks that can elapse with no
// leader before LeaderConn starts returning an error right away.
lostQuorumTimeout = 10
)
// EncryptionKeys are the current and, if necessary, pending DEKs with which to
// encrypt raft data
type EncryptionKeys struct {
CurrentDEK []byte
PendingDEK []byte
}
// EncryptionKeyRotator is an interface to find out if any keys need rotating.
type EncryptionKeyRotator interface {
GetKeys() EncryptionKeys
UpdateKeys(EncryptionKeys) error
NeedsRotation() bool
RotationNotify() chan struct{}
}
// Node represents the Raft Node useful
// configuration.
type Node struct {
raftNode raft.Node
cluster *membership.Cluster
transport *transport.Transport
raftStore *raft.MemoryStorage
memoryStore *store.MemoryStore
Config *raft.Config
opts NodeOptions
reqIDGen *idutil.Generator
wait *wait
campaignWhenAble bool
signalledLeadership uint32
isMember uint32
bootstrapMembers []*api.RaftMember
// waitProp waits for all the proposals to be terminated before
// shutting down the node.
waitProp sync.WaitGroup
confState raftpb.ConfState
appliedIndex uint64
snapshotMeta raftpb.SnapshotMetadata
writtenWALIndex uint64
ticker clock.Ticker
doneCh chan struct{}
// RemovedFromRaft notifies about node deletion from raft cluster
RemovedFromRaft chan struct{}
cancelFunc func()
removeRaftOnce sync.Once
leadershipBroadcast *watch.Queue
// used to coordinate shutdown
// Lock should be used only in stop(), all other functions should use RLock.
stopMu sync.RWMutex
// used for membership management checks
membershipLock sync.Mutex
// synchronizes access to n.opts.Addr, and makes sure the address is not
// updated concurrently with JoinAndStart.
addrLock sync.Mutex
snapshotInProgress chan raftpb.SnapshotMetadata
asyncTasks sync.WaitGroup
// stopped chan is used for notifying grpc handlers that raft node going
// to stop.
stopped chan struct{}
raftLogger *storage.EncryptedRaftLogger
keyRotator EncryptionKeyRotator
rotationQueued bool
clearData bool
// waitForAppliedIndex stores the index of the last log that was written using
// an raft DEK during a raft DEK rotation, so that we won't finish a rotation until
// a snapshot covering that index has been written encrypted with the new raft DEK
waitForAppliedIndex uint64
ticksWithNoLeader uint32
}
// NodeOptions provides node-level options.
type NodeOptions struct {
// ID is the node's ID, from its certificate's CN field.
ID string
// Addr is the address of this node's listener
Addr string
// ForceNewCluster defines if we have to force a new cluster
// because we are recovering from a backup data directory.
ForceNewCluster bool
// JoinAddr is the cluster to join. May be an empty string to create
// a standalone cluster.
JoinAddr string
// ForceJoin tells us to join even if already part of a cluster.
ForceJoin bool
// Config is the raft config.
Config *raft.Config
// StateDir is the directory to store durable state.
StateDir string
// TickInterval interval is the time interval between raft ticks.
TickInterval time.Duration
// ClockSource is a Clock interface to use as a time base.
// Leave this nil except for tests that are designed not to run in real
// time.
ClockSource clock.Clock
// SendTimeout is the timeout on the sending messages to other raft
// nodes. Leave this as 0 to get the default value.
SendTimeout time.Duration
TLSCredentials credentials.TransportCredentials
KeyRotator EncryptionKeyRotator
// DisableStackDump prevents Run from dumping goroutine stacks when the
// store becomes stuck.
DisableStackDump bool
// FIPS specifies whether the raft encryption should be FIPS compliant
FIPS bool
}
func init() {
rand.Seed(time.Now().UnixNano())
ns := metrics.NewNamespace("swarm", "raft", nil)
proposeLatencyTimer = ns.NewTimer("transaction_latency", "Raft transaction latency.")
metrics.Register(ns)
}
// NewNode generates a new Raft node
func NewNode(opts NodeOptions) *Node {
cfg := opts.Config
if cfg == nil {
cfg = DefaultNodeConfig()
}
if opts.TickInterval == 0 {
opts.TickInterval = time.Second
}
if opts.SendTimeout == 0 {
opts.SendTimeout = 2 * time.Second
}
raftStore := raft.NewMemoryStorage()
n := &Node{
cluster: membership.NewCluster(),
raftStore: raftStore,
opts: opts,
Config: &raft.Config{
ElectionTick: cfg.ElectionTick,
HeartbeatTick: cfg.HeartbeatTick,
Storage: raftStore,
MaxSizePerMsg: cfg.MaxSizePerMsg,
MaxInflightMsgs: cfg.MaxInflightMsgs,
Logger: cfg.Logger,
CheckQuorum: cfg.CheckQuorum,
},
doneCh: make(chan struct{}),
RemovedFromRaft: make(chan struct{}),
stopped: make(chan struct{}),
leadershipBroadcast: watch.NewQueue(),
keyRotator: opts.KeyRotator,
}
n.memoryStore = store.NewMemoryStore(n)
if opts.ClockSource == nil {
n.ticker = clock.NewClock().NewTicker(opts.TickInterval)
} else {
n.ticker = opts.ClockSource.NewTicker(opts.TickInterval)
}
n.reqIDGen = idutil.NewGenerator(uint16(n.Config.ID), time.Now())
n.wait = newWait()
n.cancelFunc = func(n *Node) func() {
var cancelOnce sync.Once
return func() {
cancelOnce.Do(func() {
close(n.stopped)
})
}
}(n)
return n
}
// IsIDRemoved reports if member with id was removed from cluster.
// Part of transport.Raft interface.
func (n *Node) IsIDRemoved(id uint64) bool {
return n.cluster.IsIDRemoved(id)
}
// NodeRemoved signals that node was removed from cluster and should stop.
// Part of transport.Raft interface.
func (n *Node) NodeRemoved() {
n.removeRaftOnce.Do(func() {
atomic.StoreUint32(&n.isMember, 0)
close(n.RemovedFromRaft)
})
}
// ReportSnapshot reports snapshot status to underlying raft node.
// Part of transport.Raft interface.
func (n *Node) ReportSnapshot(id uint64, status raft.SnapshotStatus) {
n.raftNode.ReportSnapshot(id, status)
}
// ReportUnreachable reports to underlying raft node that member with id is
// unreachable.
// Part of transport.Raft interface.
func (n *Node) ReportUnreachable(id uint64) {
n.raftNode.ReportUnreachable(id)
}
// SetAddr provides the raft node's address. This can be used in cases where
// opts.Addr was not provided to NewNode, for example when a port was not bound
// until after the raft node was created.
func (n *Node) SetAddr(ctx context.Context, addr string) error {
n.addrLock.Lock()
defer n.addrLock.Unlock()
n.opts.Addr = addr
if !n.IsMember() {
return nil
}
newRaftMember := &api.RaftMember{
RaftID: n.Config.ID,
NodeID: n.opts.ID,
Addr: addr,
}
if err := n.cluster.UpdateMember(n.Config.ID, newRaftMember); err != nil {
return err
}
// If the raft node is running, submit a configuration change
// with the new address.
// TODO(aaronl): Currently, this node must be the leader to
// submit this configuration change. This works for the initial
// use cases (single-node cluster late binding ports, or calling
// SetAddr before joining a cluster). In the future, we may want
// to support having a follower proactively change its remote
// address.
leadershipCh, cancelWatch := n.SubscribeLeadership()
defer cancelWatch()
ctx, cancelCtx := n.WithContext(ctx)
defer cancelCtx()
isLeader := atomic.LoadUint32(&n.signalledLeadership) == 1
for !isLeader {
select {
case leadershipChange := <-leadershipCh:
if leadershipChange == IsLeader {
isLeader = true
}
case <-ctx.Done():
return ctx.Err()
}
}
return n.updateNodeBlocking(ctx, n.Config.ID, addr)
}
// WithContext returns context which is cancelled when parent context cancelled
// or node is stopped.
func (n *Node) WithContext(ctx context.Context) (context.Context, context.CancelFunc) {
ctx, cancel := context.WithCancel(ctx)
go func() {
select {
case <-ctx.Done():
case <-n.stopped:
cancel()
}
}()
return ctx, cancel
}
func (n *Node) initTransport() {
transportConfig := &transport.Config{
HeartbeatInterval: time.Duration(n.Config.ElectionTick) * n.opts.TickInterval,
SendTimeout: n.opts.SendTimeout,
Credentials: n.opts.TLSCredentials,
Raft: n,
}
n.transport = transport.New(transportConfig)
}
// JoinAndStart joins and starts the raft server
func (n *Node) JoinAndStart(ctx context.Context) (err error) {
ctx, cancel := n.WithContext(ctx)
defer func() {
cancel()
if err != nil {
n.stopMu.Lock()
// to shutdown transport
n.cancelFunc()
n.stopMu.Unlock()
n.done()
} else {
atomic.StoreUint32(&n.isMember, 1)
}
}()
loadAndStartErr := n.loadAndStart(ctx, n.opts.ForceNewCluster)
if loadAndStartErr != nil && loadAndStartErr != storage.ErrNoWAL {
return loadAndStartErr
}
snapshot, err := n.raftStore.Snapshot()
// Snapshot never returns an error
if err != nil {
panic("could not get snapshot of raft store")
}
n.confState = snapshot.Metadata.ConfState
n.appliedIndex = snapshot.Metadata.Index
n.snapshotMeta = snapshot.Metadata
n.writtenWALIndex, _ = n.raftStore.LastIndex() // lastIndex always returns nil as an error
n.addrLock.Lock()
defer n.addrLock.Unlock()
// override the module field entirely, since etcd/raft is not exactly a submodule
n.Config.Logger = log.G(ctx).WithField("module", "raft")
// restore from snapshot
if loadAndStartErr == nil {
if n.opts.JoinAddr != "" && n.opts.ForceJoin {
if err := n.joinCluster(ctx); err != nil {
return errors.Wrap(err, "failed to rejoin cluster")
}
}
n.campaignWhenAble = true
n.initTransport()
n.raftNode = raft.RestartNode(n.Config)
return nil
}
if n.opts.JoinAddr == "" {
// First member in the cluster, self-assign ID
n.Config.ID = uint64(rand.Int63()) + 1
peer, err := n.newRaftLogs(n.opts.ID)
if err != nil {
return err
}
n.campaignWhenAble = true
n.initTransport()
n.raftNode = raft.StartNode(n.Config, []raft.Peer{peer})
return nil
}
// join to existing cluster
if err := n.joinCluster(ctx); err != nil {
return err
}
if _, err := n.newRaftLogs(n.opts.ID); err != nil {
return err
}
n.initTransport()
n.raftNode = raft.RestartNode(n.Config)
return nil
}
func (n *Node) joinCluster(ctx context.Context) error {
if n.opts.Addr == "" {
return errors.New("attempted to join raft cluster without knowing own address")
}
conn, err := dial(n.opts.JoinAddr, "tcp", n.opts.TLSCredentials, 10*time.Second)
if err != nil {
return err
}
defer conn.Close()
client := api.NewRaftMembershipClient(conn)
joinCtx, joinCancel := context.WithTimeout(ctx, n.reqTimeout())
defer joinCancel()
resp, err := client.Join(joinCtx, &api.JoinRequest{
Addr: n.opts.Addr,
})
if err != nil {
return err
}
n.Config.ID = resp.RaftID
n.bootstrapMembers = resp.Members
return nil
}
// DefaultNodeConfig returns the default config for a
// raft node that can be modified and customized
func DefaultNodeConfig() *raft.Config {
return &raft.Config{
HeartbeatTick: 1,
// Recommended value in etcd/raft is 10 x (HeartbeatTick).
// Lower values were seen to have caused instability because of
// frequent leader elections when running on flakey networks.
ElectionTick: 10,
MaxSizePerMsg: math.MaxUint16,
MaxInflightMsgs: 256,
Logger: log.L,
CheckQuorum: true,
}
}
// DefaultRaftConfig returns a default api.RaftConfig.
func DefaultRaftConfig() api.RaftConfig {
return api.RaftConfig{
KeepOldSnapshots: 0,
SnapshotInterval: 10000,
LogEntriesForSlowFollowers: 500,
// Recommended value in etcd/raft is 10 x (HeartbeatTick).
// Lower values were seen to have caused instability because of
// frequent leader elections when running on flakey networks.
HeartbeatTick: 1,
ElectionTick: 10,
}
}
// MemoryStore returns the memory store that is kept in sync with the raft log.
func (n *Node) MemoryStore() *store.MemoryStore {
return n.memoryStore
}
func (n *Node) done() {
n.cluster.Clear()
n.ticker.Stop()
n.leadershipBroadcast.Close()
n.cluster.PeersBroadcast.Close()
n.memoryStore.Close()
if n.transport != nil {
n.transport.Stop()
}
close(n.doneCh)
}
// ClearData tells the raft node to delete its WALs, snapshots, and keys on
// shutdown.
func (n *Node) ClearData() {
n.clearData = true
}
// Run is the main loop for a Raft node, it goes along the state machine,
// acting on the messages received from other Raft nodes in the cluster.
//
// Before running the main loop, it first starts the raft node based on saved
// cluster state. If no saved state exists, it starts a single-node cluster.
func (n *Node) Run(ctx context.Context) error {
ctx = log.WithLogger(ctx, logrus.WithField("raft_id", fmt.Sprintf("%x", n.Config.ID)))
ctx, cancel := context.WithCancel(ctx)
for _, node := range n.bootstrapMembers {
if err := n.registerNode(node); err != nil {
log.G(ctx).WithError(err).Errorf("failed to register member %x", node.RaftID)
}
}
defer func() {
cancel()
n.stop(ctx)
if n.clearData {
// Delete WAL and snapshots, since they are no longer
// usable.
if err := n.raftLogger.Clear(ctx); err != nil {
log.G(ctx).WithError(err).Error("failed to move wal after node removal")
}
// clear out the DEKs
if err := n.keyRotator.UpdateKeys(EncryptionKeys{}); err != nil {
log.G(ctx).WithError(err).Error("could not remove DEKs")
}
}
n.done()
}()
// Flag that indicates if this manager node is *currently* the raft leader.
wasLeader := false
transferLeadershipLimit := rate.NewLimiter(rate.Every(time.Minute), 1)
for {
select {
case <-n.ticker.C():
n.raftNode.Tick()
if n.leader() == raft.None {
atomic.AddUint32(&n.ticksWithNoLeader, 1)
} else {
atomic.StoreUint32(&n.ticksWithNoLeader, 0)
}
case rd := <-n.raftNode.Ready():
raftConfig := n.getCurrentRaftConfig()
// Save entries to storage
if err := n.saveToStorage(ctx, &raftConfig, rd.HardState, rd.Entries, rd.Snapshot); err != nil {
return errors.Wrap(err, "failed to save entries to storage")
}
// If the memory store lock has been held for too long,
// transferring leadership is an easy way to break out of it.
if wasLeader &&
(rd.SoftState == nil || rd.SoftState.RaftState == raft.StateLeader) &&
n.memoryStore.Wedged() &&
transferLeadershipLimit.Allow() {
log.G(ctx).Error("Attempting to transfer leadership")
if !n.opts.DisableStackDump {
stackDump()
}
transferee, err := n.transport.LongestActive()
if err != nil {
log.G(ctx).WithError(err).Error("failed to get longest-active member")
} else {
log.G(ctx).Error("data store lock held too long - transferring leadership")
n.raftNode.TransferLeadership(ctx, n.Config.ID, transferee)
}
}
for _, msg := range rd.Messages {
// if the message is a snapshot, before we send it, we should
// overwrite the original ConfState from the snapshot with the
// current one
if msg.Type == raftpb.MsgSnap {
msg.Snapshot.Metadata.ConfState = n.confState
}
// Send raft messages to peers
if err := n.transport.Send(msg); err != nil {
log.G(ctx).WithError(err).Error("failed to send message to member")
}
}
// Apply snapshot to memory store. The snapshot
// was applied to the raft store in
// saveToStorage.
if !raft.IsEmptySnap(rd.Snapshot) {
// Load the snapshot data into the store
if err := n.restoreFromSnapshot(ctx, rd.Snapshot.Data); err != nil {
log.G(ctx).WithError(err).Error("failed to restore cluster from snapshot")
}
n.appliedIndex = rd.Snapshot.Metadata.Index
n.snapshotMeta = rd.Snapshot.Metadata
n.confState = rd.Snapshot.Metadata.ConfState
}
// If we cease to be the leader, we must cancel any
// proposals that are currently waiting for a quorum to
// acknowledge them. It is still possible for these to
// become committed, but if that happens we will apply
// them as any follower would.
// It is important that we cancel these proposals before
// calling processCommitted, so processCommitted does
// not deadlock.
if rd.SoftState != nil {
if wasLeader && rd.SoftState.RaftState != raft.StateLeader {
wasLeader = false
log.G(ctx).Error("soft state changed, node no longer a leader, resetting and cancelling all waits")
if atomic.LoadUint32(&n.signalledLeadership) == 1 {
atomic.StoreUint32(&n.signalledLeadership, 0)
n.leadershipBroadcast.Publish(IsFollower)
}
// It is important that we set n.signalledLeadership to 0
// before calling n.wait.cancelAll. When a new raft
// request is registered, it checks n.signalledLeadership
// afterwards, and cancels the registration if it is 0.
// If cancelAll was called first, this call might run
// before the new request registers, but
// signalledLeadership would be set after the check.
// Setting signalledLeadership before calling cancelAll
// ensures that if a new request is registered during
// this transition, it will either be cancelled by
// cancelAll, or by its own check of signalledLeadership.
n.wait.cancelAll()
} else if !wasLeader && rd.SoftState.RaftState == raft.StateLeader {
// Node just became a leader.
wasLeader = true
}
}
// Process committed entries
for _, entry := range rd.CommittedEntries {
if err := n.processCommitted(ctx, entry); err != nil {
log.G(ctx).WithError(err).Error("failed to process committed entries")
}
}
// in case the previous attempt to update the key failed
n.maybeMarkRotationFinished(ctx)
// Trigger a snapshot every once in awhile
if n.snapshotInProgress == nil &&
(n.needsSnapshot(ctx) || raftConfig.SnapshotInterval > 0 &&
n.appliedIndex-n.snapshotMeta.Index >= raftConfig.SnapshotInterval) {
n.triggerSnapshot(ctx, raftConfig)
}
if wasLeader && atomic.LoadUint32(&n.signalledLeadership) != 1 {
// If all the entries in the log have become
// committed, broadcast our leadership status.
if n.caughtUp() {
atomic.StoreUint32(&n.signalledLeadership, 1)
n.leadershipBroadcast.Publish(IsLeader)
}
}
// Advance the state machine
n.raftNode.Advance()
// On the first startup, or if we are the only
// registered member after restoring from the state,
// campaign to be the leader.
if n.campaignWhenAble {
members := n.cluster.Members()
if len(members) >= 1 {
n.campaignWhenAble = false
}
if len(members) == 1 && members[n.Config.ID] != nil {
n.raftNode.Campaign(ctx)
}
}
case snapshotMeta := <-n.snapshotInProgress:
raftConfig := n.getCurrentRaftConfig()
if snapshotMeta.Index > n.snapshotMeta.Index {
n.snapshotMeta = snapshotMeta
if err := n.raftLogger.GC(snapshotMeta.Index, snapshotMeta.Term, raftConfig.KeepOldSnapshots); err != nil {
log.G(ctx).WithError(err).Error("failed to clean up old snapshots and WALs")
}
}
n.snapshotInProgress = nil
n.maybeMarkRotationFinished(ctx)
if n.rotationQueued && n.needsSnapshot(ctx) {
// there was a key rotation that took place before while the snapshot
// was in progress - we have to take another snapshot and encrypt with the new key
n.rotationQueued = false
n.triggerSnapshot(ctx, raftConfig)
}
case <-n.keyRotator.RotationNotify():
// There are 2 separate checks: rotationQueued, and n.needsSnapshot().
// We set rotationQueued so that when we are notified of a rotation, we try to
// do a snapshot as soon as possible. However, if there is an error while doing
// the snapshot, we don't want to hammer the node attempting to do snapshots over
// and over. So if doing a snapshot fails, wait until the next entry comes in to
// try again.
switch {
case n.snapshotInProgress != nil:
n.rotationQueued = true
case n.needsSnapshot(ctx):
n.triggerSnapshot(ctx, n.getCurrentRaftConfig())
}
case <-ctx.Done():
return nil
}
}
}
func (n *Node) restoreFromSnapshot(ctx context.Context, data []byte) error {
snapCluster, err := n.clusterSnapshot(data)
if err != nil {
return err
}
oldMembers := n.cluster.Members()
for _, member := range snapCluster.Members {
delete(oldMembers, member.RaftID)
}
for _, removedMember := range snapCluster.Removed {
n.cluster.RemoveMember(removedMember)
n.transport.RemovePeer(removedMember)
delete(oldMembers, removedMember)
}
for id, member := range oldMembers {
n.cluster.ClearMember(id)
if err := n.transport.RemovePeer(member.RaftID); err != nil {
log.G(ctx).WithError(err).Errorf("failed to remove peer %x from transport", member.RaftID)
}
}
for _, node := range snapCluster.Members {
if err := n.registerNode(&api.RaftMember{RaftID: node.RaftID, NodeID: node.NodeID, Addr: node.Addr}); err != nil {
log.G(ctx).WithError(err).Error("failed to register node from snapshot")
}
}
return nil
}
func (n *Node) needsSnapshot(ctx context.Context) bool {
if n.waitForAppliedIndex == 0 && n.keyRotator.NeedsRotation() {
keys := n.keyRotator.GetKeys()
if keys.PendingDEK != nil {
n.raftLogger.RotateEncryptionKey(keys.PendingDEK)
// we want to wait for the last index written with the old DEK to be committed, else a snapshot taken
// may have an index less than the index of a WAL written with an old DEK. We want the next snapshot
// written with the new key to supercede any WAL written with an old DEK.
n.waitForAppliedIndex = n.writtenWALIndex
// if there is already a snapshot at this index or higher, bump the wait index up to 1 higher than the current
// snapshot index, because the rotation cannot be completed until the next snapshot
if n.waitForAppliedIndex <= n.snapshotMeta.Index {
n.waitForAppliedIndex = n.snapshotMeta.Index + 1
}
log.G(ctx).Debugf(
"beginning raft DEK rotation - last indices written with the old key are (snapshot: %d, WAL: %d) - waiting for snapshot of index %d to be written before rotation can be completed", n.snapshotMeta.Index, n.writtenWALIndex, n.waitForAppliedIndex)
}
}
result := n.waitForAppliedIndex > 0 && n.waitForAppliedIndex <= n.appliedIndex
if result {
log.G(ctx).Debugf(
"a snapshot at index %d is needed in order to complete raft DEK rotation - a snapshot with index >= %d can now be triggered",
n.waitForAppliedIndex, n.appliedIndex)
}
return result
}
func (n *Node) maybeMarkRotationFinished(ctx context.Context) {
if n.waitForAppliedIndex > 0 && n.waitForAppliedIndex <= n.snapshotMeta.Index {
// this means we tried to rotate - so finish the rotation
if err := n.keyRotator.UpdateKeys(EncryptionKeys{CurrentDEK: n.raftLogger.EncryptionKey}); err != nil {
log.G(ctx).WithError(err).Error("failed to update encryption keys after a successful rotation")
} else {
log.G(ctx).Debugf(
"a snapshot with index %d is available, which completes the DEK rotation requiring a snapshot of at least index %d - throwing away DEK and older snapshots encrypted with the old key",
n.snapshotMeta.Index, n.waitForAppliedIndex)
n.waitForAppliedIndex = 0
if err := n.raftLogger.GC(n.snapshotMeta.Index, n.snapshotMeta.Term, 0); err != nil {
log.G(ctx).WithError(err).Error("failed to remove old snapshots and WALs that were written with the previous raft DEK")
}
}
}
}
func (n *Node) getCurrentRaftConfig() api.RaftConfig {
raftConfig := DefaultRaftConfig()
n.memoryStore.View(func(readTx store.ReadTx) {
clusters, err := store.FindClusters(readTx, store.ByName(store.DefaultClusterName))
if err == nil && len(clusters) == 1 {
raftConfig = clusters[0].Spec.Raft
}
})
return raftConfig
}
// Cancel interrupts all ongoing proposals, and prevents new ones from
// starting. This is useful for the shutdown sequence because it allows
// the manager to shut down raft-dependent services that might otherwise
// block on shutdown if quorum isn't met. Then the raft node can be completely
// shut down once no more code is using it.
func (n *Node) Cancel() {
n.cancelFunc()
}
// Done returns channel which is closed when raft node is fully stopped.
func (n *Node) Done() <-chan struct{} {
return n.doneCh
}
func (n *Node) stop(ctx context.Context) {
n.stopMu.Lock()
defer n.stopMu.Unlock()
n.Cancel()
n.waitProp.Wait()
n.asyncTasks.Wait()
n.raftNode.Stop()
n.ticker.Stop()
n.raftLogger.Close(ctx)
atomic.StoreUint32(&n.isMember, 0)
// TODO(stevvooe): Handle ctx.Done()
}
// isLeader checks if we are the leader or not, without the protection of lock
func (n *Node) isLeader() bool {
if !n.IsMember() {
return false
}
if n.Status().Lead == n.Config.ID {
return true
}
return false
}
// IsLeader checks if we are the leader or not, with the protection of lock
func (n *Node) IsLeader() bool {
n.stopMu.RLock()
defer n.stopMu.RUnlock()
return n.isLeader()
}
// leader returns the id of the leader, without the protection of lock and
// membership check, so it's caller task.
func (n *Node) leader() uint64 {
return n.Status().Lead
}
// Leader returns the id of the leader, with the protection of lock
func (n *Node) Leader() (uint64, error) {
n.stopMu.RLock()
defer n.stopMu.RUnlock()
if !n.IsMember() {
return raft.None, ErrNoRaftMember
}
leader := n.leader()
if leader == raft.None {
return raft.None, ErrNoClusterLeader
}
return leader, nil
}
// ReadyForProposals returns true if the node has broadcasted a message
// saying that it has become the leader. This means it is ready to accept
// proposals.
func (n *Node) ReadyForProposals() bool {
return atomic.LoadUint32(&n.signalledLeadership) == 1
}
func (n *Node) caughtUp() bool {
// obnoxious function that always returns a nil error
lastIndex, _ := n.raftStore.LastIndex()
return n.appliedIndex >= lastIndex
}
// Join asks to a member of the raft to propose
// a configuration change and add us as a member thus
// beginning the log replication process. This method
// is called from an aspiring member to an existing member
func (n *Node) Join(ctx context.Context, req *api.JoinRequest) (*api.JoinResponse, error) {
nodeInfo, err := ca.RemoteNode(ctx)
if err != nil {
return nil, err
}
fields := log.Fields{
"node.id": nodeInfo.NodeID,
"method": "(*Node).Join",
"raft_id": fmt.Sprintf("%x", n.Config.ID),
}
if nodeInfo.ForwardedBy != nil {
fields["forwarder.id"] = nodeInfo.ForwardedBy.NodeID
}
logger := log.G(ctx).WithFields(fields)
logger.Debug("")
// can't stop the raft node while an async RPC is in progress
n.stopMu.RLock()
defer n.stopMu.RUnlock()
n.membershipLock.Lock()
defer n.membershipLock.Unlock()
if !n.IsMember() {
return nil, status.Errorf(codes.FailedPrecondition, "%s", ErrNoRaftMember.Error())
}
if !n.isLeader() {
return nil, status.Errorf(codes.FailedPrecondition, "%s", ErrLostLeadership.Error())
}
remoteAddr := req.Addr
// If the joining node sent an address like 0.0.0.0:4242, automatically
// determine its actual address based on the GRPC connection. This
// avoids the need for a prospective member to know its own address.
requestHost, requestPort, err := net.SplitHostPort(remoteAddr)
if err != nil {
return nil, status.Errorf(codes.InvalidArgument, "invalid address %s in raft join request", remoteAddr)
}
requestIP := net.ParseIP(requestHost)
if requestIP != nil && requestIP.IsUnspecified() {
remoteHost, _, err := net.SplitHostPort(nodeInfo.RemoteAddr)
if err != nil {
return nil, err
}
remoteAddr = net.JoinHostPort(remoteHost, requestPort)
}
// We do not bother submitting a configuration change for the
// new member if we can't contact it back using its address
if err := n.checkHealth(ctx, remoteAddr, 5*time.Second); err != nil {
return nil, err
}
// If the peer is already a member of the cluster, we will only update
// its information, not add it as a new member. Adding it again would
// cause the quorum to be computed incorrectly.
for _, m := range n.cluster.Members() {
if m.NodeID == nodeInfo.NodeID {
if remoteAddr == m.Addr {
return n.joinResponse(m.RaftID), nil
}
updatedRaftMember := &api.RaftMember{
RaftID: m.RaftID,
NodeID: m.NodeID,
Addr: remoteAddr,
}
if err := n.cluster.UpdateMember(m.RaftID, updatedRaftMember); err != nil {
return nil, err
}