Skip to content

Latest commit

 

History

History
412 lines (313 loc) · 20.6 KB

README_EN.md

File metadata and controls

412 lines (313 loc) · 20.6 KB

Trading Calendar

Note: As of version 2.00.12/3.00.0 (2024/4/1), this document is no longer maintained. For the latest documentation, please refer to DolphinDB Manual>Trading Calendar.

Trading calendar is a frequently used tool for data analysis, which helps to quickly obtain exchange calendars and perform calculations based on trading calendars. Starting from version 2.00.9/1.30.21, DolphinDB provides built-in trading calendars of more than fifty exchanges. Refer to Release for information on the latest calendars.

This tutorial describes how to use and customize trading calendars in DolphinDB. Specifically: check trading days; perform calculations based on trading calendars; create your own trading calendars; update trading calendars.

Use Trading Calendars

The built-in trading calendars can be used for various scenarios.

Note:

  • Starting from version 1.30.23/2.00.11, multiple trading days frequency is supported for functions transFreq, asFreq, and resample with the number specified before the trading calendar identifier in rule.

  • Starting from version 2.00.11.1, trading calendar, specified as “integers + identifiers“, can be used and calculated as DURATION data.

Check Trading Days

You can use function getMarketCalendar(marketName, [startDate], [endDate]) to get trading days of the corresponding exchange in the date range determined by startDate and endDate.

To check the trading days of New York Stock Exchange (XNYS) between 2022.1.1 and 2022.1.10:

getMarketCalendar("XNYS",2022.01.01, 2022.01.10)

// output
[2022.01.03,2022.01.04,2022.01.05,2022.01.06,2022.01.07,2022.01.10]

Create the DateOffset of Trading Days

To shift a trading day forward or backward, you can use function temporalAdd(date, duration, exchangeId).

Take XNYS for example, we add two trading days to the dates between 2023.1.1 and 2023.1.6:

dates=[2023.01.01, 2023.01.02, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
temporalAdd(dates,2,"XNYS")

// output
[2023.01.04,2023.01.04,2023.01.05,2023.01.06,2023.01.09,2023.01.10]

Or you can also use the following script if you use version 2.00.11.1 or higher. For detailed usage of trading calendar as DURATION type, refer to section "Use Trading Days as DURATION Type".

dates=[2023.01.01, 2023.01.02, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
temporalAdd(dates, 2XNYS)

//output
[2023.01.04,2023.01.04,2023.01.05,2023.01.06,2023.01.09,2023.01.10]

Obtain the Closest Trading Day

You can get the closest trading day of a certain day with function transFreq(X,rule).

For example, specify parameter rule as XNYS. We can get the closest trading days of each date between 2023.1.1 and 2023.1.6:

dates=[2023.01.01, 2023.01.02, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
dates.transFreq("XNYS")

// output
[2022.12.30,2022.12.30,2023.01.03,2023.01.04,2023.01.05,2023.01.06]

Data Sampling Based on Trading Days

You can choose functions asFreq(X,rule) or resample(X,rule,func) to sample data on trading days. The only difference of the two lies in whether data can be aggregated.

Function asFreq(X,rule) will return the result by trading days. If there are multiple records in the same trading day, only the first value will be taken. If there is no data in a trading day, it will be filled with NULL.

The following example obtains the stock prices of XNYS in trading days from 2022.12.30 to 2023.1.6:

timestampv = [2022.12.30T23:00:00.000,2023.01.01T00:00:00.000,2023.01.03T00:10:00.000,2023.01.03T00:20:00.000,2023.01.04T00:20:00.000,2023.01.04T00:30:00.000,2023.01.06T00:40:00.000]
close = [100.10, 100.10, 100.10, 78.89, 88.99, 88.67, 78.78]
s=indexedSeries(timestampv, close)
s.asFreq("XNYS")

// output
           #0                 
           ------
2022.12.30|100.10
2023.01.03|100.10
2023.01.04|88.99 
2023.01.05|                   
2023.01.06|78.78

Function resample(X,rule,func) will return the aggregated result of data sampled by trading days.

In the following example, we obtain the closing prices of XNYS stocks in trading days from 2022.12.30 to 2023.1.6:

timestampv = [2022.12.30T23:00:00.000,2023.01.01T00:00:00.000,2023.01.03T00:10:00.000,2023.01.03T00:20:00.000,2023.01.04T00:20:00.000,2023.01.04T00:30:00.000,2023.01.06T00:40:00.000]
close = [100.10, 100.10, 100.10, 78.89, 88.99, 88.67, 78.78]
s=indexedSeries(timestampv, close)
s.resample("XNYS", last)

// output
           #0                 
           ------
2022.12.30|100.10
2023.01.03|78.89
2023.01.04|88.67 
2023.01.05|                   
2023.01.06|78.78

Use Trading Days as DURATION Type (Only for Server 200)

Starting from version 2.00.11.1, trading calendar, specified as “integers + identifiers“, can be used as DURATION data.

Convert Trading Days to DURATION Type

Trading days of DURATION type can be specified by converting a string of trading calendar identifier with theduration function.

Take XNYS for example, we can convert string “2XNYS“ to DURATION type and query the average closing price every two trading days with interval specified:

y = duration("2XNYS")
date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
t = table(date, close)
select avg(close) from t group by interval(date, y, "prev")

// output
   | interval_date | avg_close 
---|---------------|-----------
 0 | 2022.12.30    | 89.495    
 1 | 2023.01.04    | 88.83     
 2 | 2023.01.06    | 78.78     

Trading Days as Windows for wj

The window parameter of wj now can be specified as trading calendar identifiers.

The following example performs the window join operation on “t1“ and “t2“ and obtain the average closing price over each window [-2XNYS:0XNYS]:

t1 = table(2023.01.03 2023.01.06 as date)
date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
t2 = table(date, close)
wj(t1, t2, -2XNYS:0XNYS, <avg(close)>, `date);

// output
   | date       | avg_close         
---|------------|-------------------
 0 | 2023.01.03 | 89.495            
 1 | 2023.01.06 | 85.48 

Trading Days as Sliding Windows

The trading days can be used for measuring sliding windows for the moving, time-based moving, twindow, and tmovingWindowData functions.

Moving Functions

Take msum as an example, we obtain the sum of closing prices of an XNYS stock every two trading days:

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
X1 = indexedSeries(date, close)
msum(X1, window=2XNYS)

// output
           #0                 
           ------
2022.12.30|100.1
2023.01.03|178.99
2023.01.04|167.88
2023.01.05|177.66
2023.01.06|167.45

Time-based Moving Functions

Take tmavg for example, we obtain the average closing prices of an XNYS stock every two trading days:

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
t = table(date, close)
select tmavg(date, close, 2XNYS) from t

// output
   | tmavg_date         
---|------------
 0 | 100.1              
 1 | 89.495
 2 | 83.94
 3 | 88.83
 4 | 83.725

Function twindow

The following example calculates the average closing price of an XNYS stock over each window [-1XNYS:2XNYS]:

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
t = table(date, close)
select twindow(avg, close, date, -1XNYS:2XNYS) from t

// output
   | twindow_avg       
---|-------------------
 0 | 89.327 
 1 | 89.163 
 2 | 83.833
 3 | 85.48
 4 | 83.725

Function tmovingWindowData

The following example returns an array vector where each row indicates the closing prices of each window (i.e., two trading days).

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
tmovingWindowData(date, close, 2XNYS)

// output
[[100.1],[100.1, 78.89],[78.89, 88.99],[88.99, 88.67],[88.67, 78.78]]

Shift Elements Based on Trading Days

Use functions move and tmove to shift elements based on trading days.

Function move

The following example shifts the closing prices of an XNYS stock to the right for two trading days:

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
X1 = indexedSeries(date, close)
move(X1, 2XNYS)

// output
          #0                 
           ------
2022.12.30|
2023.01.03|
2023.01.04|100.1
2023.01.05|78.89
2023.01.06|88.99

Function tmove

The following example obtains the closing prices from two trading days before the current day.

date = [2022.12.30, 2023.01.03, 2023.01.04, 2023.01.05, 2023.01.06]
close = [100.10, 78.89, 88.99, 88.67, 78.78]
t = table(date, close)
select *, tmove(date, close, 2XNYS) from t

// output
      | date       | close | tmove_date
------|------------|-------|-----------
 0    | 2022.12.30 | 100.1 |       
 1    | 2023.01.03 | 78.89 |       
 2    | 2023.01.04 | 88.99 | 100.1 
 3    | 2023.01.05 | 88.67 | 78.89 
 4    | 2023.01.06 | 78.78 | 88.99

Customize Trading Calendars

DolphinDB also allows administrators to customize trading calendars with built-in functions.

Note: Since version 1.30.23/2.00.11, naming the trading calendar identifier with digits is no longer permitted. It must consist of four uppercase letters and cannot be the same as the file name in marketHolidayDir.

Add a New Trading Calendar

Suppose there is an exchange named “XDDB“, function addMarketHoliday(marketName, holiday) can be used to add a new XDDB calendar. A XDDB.csv file will be added to the /marketHoliday/ directory. Weekends are recognized as holidays in DolphinDB by default, therefore, only weekday holidays need to be filled in the file.

Once a new trading calendar has been generated, functions such as getMarketCalendar can be used directly based on the new calendar:

//set 2023.01.03 (Tue.) and 2023.01.04 (Wed.) as holidays
holiday = 2023.01.03 2023.01.04  
//user login
login(`admin,`123456)
//generate a trading calendar
addMarketHoliday("XDDB",holiday)

//get the trading days of the new calendar in a date range
getMarketCalendar("XDDB",2023.01.01, 2023.01.10)
//output
[2023.01.02,2023.01.05,2023.01.06,2023.01.09,2023.01.10]

temporalAdd(2023.01.01,2,"XDDB")
//output
2023.01.05

Note: The newly added trading calendar is only valid on the current node. Execute function addMarketHoliday on other nodes for it to take effect on those nodes.

Update the Trading Calendar

If you want to update the existing calendar of XDDB exchange, function updateMarketHoliday(marketName, holiday) can be used to reset the holidays.

Note: The file will be overwritten. The original holidays will be replaced with the holidays specified by this function.

The following example resets the dates 2023.03.07 and 2023.03.08 as holidays for the XDDB calendar. Check the next trading day after 2022.01.01 with function temporalAdd:

//set 2023.03.07 (Tue.) and 2023.03.08 (Wed.) as holiday
updateMarketHoliday("XDDB",2023.03.07 2023.03.08)

//the original holidays 2023.01.03 and 2023.01.04 are no longer holidays
getMarketCalendar("XDDB",2023.01.01, 2023.01.10)
//output
[2023.01.02,2023.01.03,2023.01.04,2023.01.05,2023.01.06,2023.01.09,2023.01.10]

//As holidays, 2023.03.07 and 2023.03.08 are not included in the trading calendar
getMarketCalendar("XDDB",2023.03.01, 2023.03.10)
//output
[2023.03.01,2023.03.02,2023.03.03,2023.03.06,2023.03.09,2023.03.10]

Calendar Support

All exchange calendars supported are listed below.

Note that calendars are updated according to the holidays announced on the official website of each exchange and the local governments. Refer to Release for information on the latest calendars.

  • Major Stock Exchanges
ISO Code Exchange Country Exchange Website CSV File Path Starting from
AIXK Astana International Exchange Kazakhstan https://aix.kz/trading/trading-calendar/ marketHoliday/AIXK.csv 2017
ASEX Athens Stock Exchange Greece https://www.athexgroup.gr/market-alternative-holidays marketHoliday/ASEX.csv 2004
BVMF BMF Bovespa Brazil https://www.b3.com.br/en_us/solutions/platforms/puma-trading-system/for-members-and-traders/trading-calendar/holidays/ marketHoliday/BVMF.csv 2004
CCFX China Finacial Futures Exchange China http://www.cffex.com.cn/jyrl/ marketHoliday/CCFX.csv 2007
CMES Chicago Mercantile Exchange USA https://www.cmegroup.com/tools-information/holiday-calendar.html#cmeGlobex marketHoliday/CMES.csv 2004
CZCE Zhengzhou Commodity Exchange China http://www.czce.com.cn/cn/jysj/jyyl/H770313index_1.htm marketHoliday/CZCE.csv 1991
XDCE Dalian Commodity Exchange China http://big5.dce.com.cn:1980/SuniT/www.dce.com.cn/DCE/TradingClearing/Exchange%20Notice/1516085/index.html marketHoliday/XDCE.csv 1994
IEPA ICE US US https://www.theice.com/holiday-hours?utm_source=website&utm_medium=search&utm_campaign=spotlight marketHoliday/IEPA.csv 2004
XINE Shanghai International Energey Exchange China https://www.ine.cn/en/news/notice/6598.html marketHoliday/XINE.csv 2017
SHFE Shanghai Futures Exchange China https://www.shfe.com.cn/bourseService/businessdata/calendar/ marketHoliday/SHFE.csv 1992
XAMS Euronext Amsterdam Netherlands https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XAMS.csv 2004
XASX Austrialian Securities Exchange Australia https://www2.asx.com.au/markets/market-resources/asx-24-trading-calendar marketHoliday/XASX.csv 2004
XBKK Stock Exchange of Thailand Thailand https://www.set.or.th/en/about/event-calendar/holiday?year=2023 marketHoliday/XBKK.csv 2004
XBOG Colombia Securities Exchange Colombia https://www.bvc.com.co/non-business-market-days marketHoliday/XBOG.csv 2004
XBOM Bombay Stock Exchange India https://www.bseindia.com/static/markets/marketinfo/listholi.aspx marketHoliday/XBOM.csv 2004
XBRU Euronext Brussels Belgium https://www.euronext.com/en/trade/trading-hours-holidays#:~:text=Calendar%20of%20business%20days%202023%20%20%20Euronext:%20%20Closed%20%2012%20more%20rows%20 marketHoliday/XBRU.csv 2004
XBSE Bucharest Stock Exchange Romania https://www.bvb.ro/TradingAndStatistics/TradingSessionSchedule marketHoliday/XBSE.csv 2004
XBUD Budapest Stock Exchange Hungary https://www.bse.hu/Products-and-Services/Trading-information/trading-calendar-2023 marketHoliday/XBUD.csv 2004
XBUE Buenos Aires Stock Exchange Argentina marketHoliday/XBUE.csv 2004
XCBF CBOE Futures USA https://www.cboe.com/about/hours/us-futures/ marketHoliday/XCBF.csv 2004
XCSE Copenhagen Stock Exchange Denmark https://www.nasdaqomxnordic.com/tradinghours/ marketHoliday/XCSE.csv 2004
XDUB Irish Stock Exchange Ireland https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XDUB.csv 2004
XETR Xetra Germany https://www.xetra.com/xetra-en/newsroom/trading-calendar marketHoliday/XETR.csv 2004
XFRA Frankfurt Stock Exchange Germany https://www.boerse-frankfurt.de/en/know-how/trading-calendar marketHoliday/XFRA.csv 2004
XHEL Helsinki Stock Exchange Finland https://www.nasdaqomxnordic.com/tradinghours/XHEL marketHoliday/XHEL.csv 2004
XHKG Hong Kong Exchanges Hong Kong, China https://www.hkex.com.hk/News/HKEX-Calendar?sc_lang=zh-HK&defaultdate=2023-02-01 marketHoliday/XHKG.csv 2004
XICE Iceland Stock Exchange Iceland https://www.nasdaqomxnordic.com/tradinghours/ marketHoliday/XICE.csv 2004
XIDX Indonesia Stock Exchange Indonesia https://idx.co.id/en/about-idx/trading-holiday/ marketHoliday/XIDX.csv 2004
XIST Istanbul Stock Exchange Türkiye https://borsaistanbul.com/en/sayfa/3631/official-holidays marketHoliday/XIST.csv 2004
XJSE Johannesburg Stock Exchange South Africa https://www.jse.co.za/ marketHoliday/XJSE.csv 2004
XKAR Pakistan Stock Exchange Pakistan https://www.psx.com.pk/psx/exchange/general/calendar-holidays marketHoliday/XKAR.csv 2004
XKLS Malaysia Stock Exchange Malaysia https://www.bursamalaysia.com/about_bursa/about_us/calendar marketHoliday/XKLS.csv 2004
XKRX Korea Exchange Republic of Korea http://global.krx.co.kr/contents/GLB/05/0501/0501110000/GLB0501110000.jsp marketHoliday/XKRX.csv 2004
XLIM Lima Stock Exchange Peru marketHoliday/XLIM.csv 2004
XLIS Euronext Lisbon Portugal https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XLIS.csv 2004
XLON London Stock Exchange England https://www.londonstockexchange.com/securities-trading/trading-access/business-days marketHoliday/XLON.csv 2004
XMAD Euronext Lisbon Portugal https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XMAD.csv 2004
XMEX Mexican Stock Exchange Mexico https://www.bmv.com.mx/en/bmv-group/holiday-schedule marketHoliday/XMEX.csv 2004
XMIL Borsa Italiana Italy https://www.borsaitaliana.it/borsaitaliana/calendario-e-orari-di-negoziazione/calendario-borsa-orari-di-negoziazione.en.htm marketHoliday/XMIL.csv 2004
XMOS Moscow Exchange Russia https://www.moex.com/en/tradingcalendar/ marketHoliday/XMOS.csv 2004
XNYS New York Stock Exchange USA https://www.nyse.com/markets/hours-calendars marketHoliday/XNYS.csv 2004
XNZE New Zealand Exchangen New Zealand https://www.nzx.com/services/nzx-trading/hours-boards marketHoliday/XNZE.csv 2004
XOSL Oslo Stock Exchange Norway https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XOSL.csv 2004
XPAR Euronext Paris France https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XPAR.csv 2004
XPHS Philippine Stock Exchange Philippines https://www.pse.com.ph/investing-at-pse/#investing2 marketHoliday/XPHS.csv 2004
XPRA Prague Stock Exchange Czech Republic https://www.pse.cz/en/trading/trading-information/trading-calendar marketHoliday/XPRA.csv 2004
XSES Singapore Exchange Singapore https://www.mom.gov.sg/employment-practices/public-holidays marketHoliday/XSES.csv 2004
XSGO Santiago Stock Exchange Chile https://www.euronext.com/en/trade/trading-hours-holidays marketHoliday/XSGO.csv 2004
XSHE Shenzhen Stock Exchange China http://www.szse.cn/disclosure/index.html marketHoliday/XSHE.csv 1992
XSHG Shanghai Stock Exchange China http://www.sse.com.cn/market/view/ marketHoliday/XSHG.csv 1991
XSTO Stockholm Stock Exchange Sweden https://www.nasdaqomxnordic.com/tradinghours/ marketHoliday/XSTO.csv 2004
XSWX SIX Swiss Exchange Switzerland https://www.six-group.com/en/products-services/the-swiss-stock-exchange/market-data/news-tools/trading-currency-holiday-calendar.html#/ marketHoliday/XSWX.csv 2004
XTAI Taiwan Stock Exchange Corp Taiwan, China https://www.twse.com.tw/en/holidaySchedule/holidaySchedule marketHoliday/XTAI.csv 2004
XTKS Tokyo Stock Exchange Japan https://www.jpx.co.jp/english/corporate/about-jpx/calendar/ marketHoliday/XTKS.csv 2004
XTSE Toronto Stock Exchange Canada https://www.tsx.com/trading/calendars-and-trading-hours/calendar marketHoliday/XTSE.csv 2004
XWAR Poland Stock Exchange Poland marketHoliday/XWAR.csv 2004
XWBO Wiener Borse Austria https://www.wienerborse.at/en/trading/trading-information/trading-calendar/ marketHoliday/XWBO.csv 2004