-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_example.py
116 lines (100 loc) · 3.56 KB
/
local_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from search.problem import *
from search.local_search import *
from input.words import *
# formulate the problem
class CrossPuzzle:
def __init__(self, words_lengths, same_letters, vocabulary, initial_state=None):
if initial_state is None:
initial_state = []
self.initial_state = initial_state
self.words_lengths = words_lengths
self.same_letters = same_letters
self.vocabulary = vocabulary
def words_with_length(self, length):
return [w.lower() for w in self.vocabulary if len(w) == 6]
def successors(self, state):
"""
Given a state returns the reachable states with the respective actions
:param state: actual state
:return: list of successor states and actions
"""
possible_actions = self.actions(state)
return [(self.result(state, a), a) for a in possible_actions]
def actions(self, state):
"""
Given a state returns the list of possible actions
:param state: actual state
:return: a list of actions
"""
next_word = len(state)
if next_word == len(self.words_lengths):
return []
return self.words_with_length(self.words_lengths[next_word])
def result(self, state=None, action=None):
"""
Given a state and an action returns the reached state
:param state: actual state
:param action: chosen action
:return: reached state
"""
new_state = list(state)
new_state.append(action)
return tuple(new_state)
def conflicts(self, state):
"""
Given a state return the number of conflicts
:param state: a state
:return: number of conflicting queens
"""
conflicts = 0
for w1, w2, pos1, pos2 in self.same_letters:
if w1 in range(len(state)):
if w2 in range(len(state)):
if state[w1][pos1] == state[w2][pos2]:
conflicts += 1
return conflicts
def goal_test(self, state):
"""
Checks if the goal condition has been reached
:param state: actual state
:return: True if the goal condition is matched, False otherwise
"""
return len(state) == len(self.words_lengths)
def cost(self, state, action):
"""
Returns the cost of an action. In this problem the cost is always unitary.
:param state: a state
:param action: an action
:return: a cost
"""
return 1
def value(self, state):
"""
Returns the value of a state. This function is used for evaluating a state in the local search.
(The higher the better)
:param state: a state
:return: the value of a state
"""
return len(state) - self.conflicts(state)
@staticmethod
def random():
"""
Generate a random chess with 8 queens
:return: a tuple with 8 elements
"""
chess = [random.randrange(0, 8) for _ in range(8)]
return tuple(chess)
problem = CrossPuzzle(words_lengths=[6, 7, 3],
same_letters=[(0, 1, 4, 1), (1, 2, 4, 0)],
vocabulary=words)
print()
# search algorithm
search = HillClimbing(problem=problem)
# search = SimulatedAnnealing(problem=problem, max_time=1000, lam=0.01)
# search = Genetic(problem=problem, population=50, generations=100, p_mutation=0.1, gene_pool=list(range(8)))
# run algorithm
result, state = search.run()
# display the solutions
print(result)
print(problem.value(state))
print(state)