forked from yhygao/CBIM-Medical-Image-Segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prediction.py
executable file
·289 lines (203 loc) · 8.66 KB
/
prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import builtins
import logging
import os
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from model.utils import get_model
from training.dataset.utils import get_dataset
from inference.utils import get_inference
from dataset_conversion.utils import ResampleXYZAxis, ResampleLabelToRef
from torch.utils import data
import SimpleITK as sitk
import yaml
import argparse
import time
import math
import sys
import pdb
import warnings
import matplotlib.pyplot as plt
from utils import (
configure_logger,
save_configure,
)
warnings.filterwarnings("ignore", category=UserWarning)
def prediction(model_list, tensor_img, args):
inference = get_inference(args)
with torch.no_grad():
tensor_img = tensor_img.cuda().float()
D, H, W = tensor_img.shape
tensor_pred = torch.zeros([args.classes, D, H, W]).to(tensor_img.device)
if args.dimension == '2d':
tensor_img = tensor_img.unsqueeze(0).permute(1, 0, 2, 3)
else:
tensor_img = tensor_img.unsqueeze(0).unsqueeze(0)
for model in model_list:
pred = inference(model, tensor_img, args)
if args.dimension == '2d':
pred = pred.permute(1, 0, 2, 3)
else:
pred = pred.squeeze(0)
tensor_pred += pred
_, label_pred = torch.max(tensor_pred, dim=0)
return label_pred
def pad_to_training_size(np_img, args):
z, y, x = np_img.shape
if args.dimension == '3d':
if z < args.training_size[0]:
diff = (args.training_size[0]+2 - z) // 2
np_img = np.pad(np_img, ((diff, diff), (0,0), (0,0)))
z_start = diff
z_end = diff + z
else:
z_start = 0
z_end = z
if y < args.training_size[1]:
diff = (args.training_size[1]+2 - y) // 2
np_img = np.pad(np_img, ((0,0), (diff, diff), (0,0)))
y_start = diff
y_end = diff + y
else:
y_start = 0
y_end = y
if x < args.training_size[2]:
diff = (args.training_size[2]+2 -x) // 2
np_img = np.pad(np_img, ((0,0), (0,0), (diff, diff)))
x_start = diff
x_end = diff + x
else:
x_start = 0
x_end = x
return np_img, [z_start, z_end, y_start, y_end, x_start, x_end]
elif args.dimension == '2d':
if y < args.training_size[0]:
diff = (args.training_size[0]+2 - y) // 2
np_img = np.pad(np_img, ((0,0), (diff, diff), (0,0)))
y_start = diff
y_end = diff + y
else:
y_start = 0
y_end = y
if x < args.training_size[1]:
diff = (args.training_size[1]+2 -x) // 2
np_img = np.pad(np_img, ((0,0), (0,0), (diff, diff)))
x_start = diff
x_end = diff + x
else:
x_start = 0
x_end = x
return np_img, [y_start, y_end, x_start, x_end]
else:
raise ValueError
def unpad_img(np_pred, original_idx, args):
if args.dimension == '3d':
z_start, z_end, y_start, y_end, x_start, x_end = original_idx
return np_pred[z_start:z_end, y_start:y_end, x_start:x_end]
elif args.dimension == '2d':
y_start, y_end, x_start, x_end = original_idx
return np_pred[:, y_start:y_end, x_start:x_end]
else:
raise ValueError
def preprocess(itk_img, target_spacing, args):
'''
This function performs preprocessing to make images to be consistent with training, e.g. spacing resample, redirection and etc.
Args:
itk_img: the simpleITK image to be predicted
Return: the preprocessed image tensor
'''
if args.dimension == '3d':
# target spacing: (x, y, z)
if itk_img.GetSpacing() != target_spacing:
itk_img = ResampleXYZAxis(itk_img, target_spacing, interp=sitk.sitkBSpline)
elif args.dimension == '2d':
# current only support resize x,y, and keep z unchanged
x_spacing, y_spacing, z_spacing = itk_img.GetSpacing()
if (x_spacing, y_spacing) != target_spacing:
itk_img = ResampleXYZAxis(itk_img, (target_spacing[0], target_spacing[1], z_spacing), interp=sitk.sitkBSpline)
else:
raise ValueError
np_img = sitk.GetArrayFromImage(itk_img)
'''
Need to modify the following preprocessing steps to be consistent with training. Copy from the dataset_xxx.py
'''
#np_img = np.clip(np_img, -79, 304)
#np_img -= 100.93
#np_img /= 76.90
max98 = np.percentile(np_img, 98)
np_img = np.clip(np_img, 0, max98)
np_img = np_img / max98
np_img, original_idx = pad_to_training_size(np_img, args)
tensor_img = torch.from_numpy(np_img)
return tensor_img, original_idx
def postprocess(tensor_pred, itk_img, original_idx, args):
np_pred = tensor_pred.cpu().numpy().astype(np.uint8)
np_pred = unpad_img(np_pred, original_idx, args)
itk_pred = sitk.GetImageFromArray(np_pred)
if args.dimension == '2d':
target_spacing = (args.target_spacing[0], args.target_spacing[1], itk_img.GetSpacing()[2])
else:
target_spacing = args.target_spacing
if target_spacing != itk_img.GetSpacing():
itk_pred.SetSpacing(target_spacing)
itk_pred.SetOrigin(itk_img.GetOrigin())
itk_pred.SetDirection(itk_img.GetDirection())
itk_pred = ResampleLabelToRef(itk_pred, itk_img, interp=sitk.sitkNearestNeighbor)
itk_pred.CopyInformation(itk_img)
return itk_pred
def init_model(args):
model_list = []
for ckp_path in args.load:
model = get_model(args)
pth = torch.load(ckp_path, map_location=torch.device('cpu'))
if args.ema:
model.load_state_dict(pth['ema_model_state_dict'])
else:
model.load_state_dict(pth['model_state_dict'])
# If you want to load checkpoint trained with previous version code, use the following instead:
#model.load_state_dict(pth)
model.cuda()
model_list.append(model)
print(f"Model loaded from {ckp_path}")
return model_list
def get_parser():
def parse_spacing_list(string):
return tuple([float(spacing) for spacing in string.split(',')])
def parse_model_list(string):
return string.split(',')
parser = argparse.ArgumentParser(description='CBIM Medical Image Segmentation')
parser.add_argument('--dataset', type=str, default='kits', help='dataset name')
parser.add_argument('--model', type=str, default='unet', help='model name')
parser.add_argument('--dimension', type=str, default='3d', help='2d model or 3d model')
parser.add_argument('--load', type=parse_model_list, default=False, help='the path of trained model checkpoint. Use \',\' as the separator if load multiple checkpoints for ensemble')
parser.add_argument('--img_path', type=str, default=False, help='the path of the directory of images to be predicted')
parser.add_argument('--save_path', type=str, default='./result/', help='the path to save predicted label')
parser.add_argument('--target_spacing', type=parse_spacing_list, default='1.0,1.0,1.0', help='the spacing that used for training, in x,y,z order for 3d, and x,y order for 2d')
parser.add_argument('--gpu', type=str, default='0')
args = parser.parse_args()
config_path = 'config/%s/%s_%s.yaml'%(args.dataset, args.model, args.dimension)
if not os.path.exists(config_path):
raise ValueError("The specified configuration doesn't exist: %s"%config_path)
print('Loading configurations from %s'%config_path)
with open(config_path, 'r') as f:
config = yaml.load(f, Loader=yaml.SafeLoader)
for key, value in config.items():
setattr(args, key, value)
return args
if __name__ == '__main__':
args = get_parser()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
args.sliding_window = True
args.window_size = args.training_size
model_list = init_model(args)
for img_name in os.listdir(args.img_path):
itk_img = sitk.ReadImage(os.path.join(args.img_path, img_name))
tmp_itk_img = sitk.GetImageFromArray(sitk.GetArrayFromImage(itk_img))
tmp_itk_img.CopyInformation(itk_img)
tensor_img, original_idx = preprocess(tmp_itk_img, args.target_spacing, args)
pred_label = prediction(model_list, tensor_img, args)
itk_pred = postprocess(pred_label, itk_img, original_idx, args)
sitk.WriteImage(itk_pred, os.path.join(args.save_path, img_name))
print(img_name, 'done')