-
Notifications
You must be signed in to change notification settings - Fork 1
/
trainCNN.lua
186 lines (173 loc) · 6.31 KB
/
trainCNN.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
--
-- Copyright (c) 2014, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the BSD-style license found in the
-- LICENSE file in the root directory of this source tree. An additional grant
-- of patent rights can be found in the PATENTS file in the same directory.
--
require 'optim'
paths.dofile('util/ffi_helper.lua')
paths.dofile('trainUtil.lua')
local batchNumber
local top1_epoch, loss_epoch
-- 2. SGD parameters
-- Setup a reused optimization state (for sgd). If needed, reload it from disk
local optimState = {
learningRate = opt.LR,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = opt.weightDecay
}
if opt.optimState ~= 'none' then
assert(paths.filep(opt.optimState), 'File not found: ' .. opt.optimState)
print('Loading optimState from file: ' .. opt.optimState)
optimState = torch.load(opt.optimState)
end
-- 3. train CNN with sgd
-- this function handles the high-level training loop,
-- i.e. load data, train model, save model and state to disk
function train()
print('==> doing epoch on training data:')
print("==> online epoch # " .. epoch)
local params, newRegime = paramsForEpoch(epoch,opt.paramId)
-- constant update, good for finetune, otherwise hard to change lr
optimState = {
learningRate = params.learningRate,
learningRateDecay = 0.0,
momentum = opt.momentum,
dampening = 0.0,
weightDecay = params.weightDecay
}
batchNumber = 0
cutorch.synchronize()
-- set the dropouts to training mode
model:training()
-- model:evaluate()
local tm = torch.Timer()
top1_epoch = 0
loss_epoch = 0
if opt.retrainOpt~='1' then
for i=1,opt.epochSize*opt.iter_size do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, labels = trainLoader:sample(opt.batchSize)
-- return sendTensor(inputs), sendTensor(labels)
return inputs, labels
end,
-- the end callback (runs in the main thread)
trainBatchCNN_p
-- trainBatchCNN
)
end
else
for i=1,opt.epochSize do
-- queue jobs to data-workers
donkeys:addjob(
-- the job callback (runs in data-worker thread)
function()
local inputs, labels = trainLoader:sample(opt.batchSize)
return sendTensor(inputs), sendTensor(labels)
end,
-- the end callback (runs in the main thread)
trainBatchCNN_last
)
end
end
donkeys:synchronize()
cutorch.synchronize()
top1_epoch = top1_epoch * 100 / (opt.batchSize * opt.epochSize)
loss_epoch = loss_epoch / opt.epochSize
trainLogger:add{
['% top1 accuracy (train set)'] = top1_epoch,
['avg loss (train set)'] = loss_epoch
}
print(string.format('Epoch: [%d][TRAINING SUMMARY] Total Time(s): %.2f\t'
.. 'average loss (per batch): %.2f \t '
.. 'accuracy(%%):\t top-1 %.2f\t',
epoch, tm:time().real, loss_epoch, top1_epoch))
print('\n')
-- save model
collectgarbage()
if epoch % opt.epochSave == 0 then
model:clearState()
saveDataParallel(paths.concat(opt.save, 'model_' .. epoch .. '.t7'), model) -- defined in trainUtil.lua
torch.save(paths.concat(opt.save, 'optimState_' .. epoch .. '.t7'), optimState)
end
end -- of train()
-------------------------------------------------------------------------------------------
-- create tensor buffers in main thread and deallocate their storages.
-- the thread loaders will push their storages to these buffers when done loading
-- local inputsCPU = torch.FloatTensor()
-- local labelsCPU = torch.LongTensor()
-- GPU inputs (preallocate)
local inputs = torch.CudaTensor()
local labels = torch.CudaTensor()
local timer = torch.Timer()
local dataTimer = torch.Timer()
local parameters, gradParameters = model:getParameters()
local function feval_p()
return criterion.output, gradParameters
end
top1_p=0;
err1_p=0;
dataLoadingTime_p=0;
function trainBatchCNN_p(inputsCPU, labelsCPU)
cutorch.synchronize()
collectgarbage()
-- transfer over to GPU
inputs:resize(inputsCPU:size()):copy(inputsCPU)
labels:resize(labelsCPU:size()):copy(labelsCPU)
-- key: batchNumber is in serial
if batchNumber % opt.iter_size == 0 then
model:zeroGradParameters()
dataLoadingTime_p = dataTimer:time().real
timer:reset()
top1_p=0;err1_p=0;
end
local err, outputs
outputs = model:forward(inputs)
err = criterion:forward(outputs, labels)
local gradOutputs = criterion:backward(outputs, labels)
model:backward(inputs, torch.mul(gradOutputs,opt.weightRatio))
cutorch.synchronize()
local pred_sorted
if outputs:size(2)==1 then
pred_sorted = outputs:float():gt(0.5)
else
_,pred_sorted = outputs:float():sort(2, true) -- descending
end
for i=1,opt.batchSize do
if pred_sorted[i][1] == labelsCPU[i] then
top1_p = top1_p + 1;
end
end
err1_p = err1_p + err
if (batchNumber+1) % opt.iter_size == 0 then -- update
gradParameters:div(opt.iter_size)
print('after:',gradParameters:min(),gradParameters:max())
if opt.gradClip>0 then
gradParameters:clamp(-opt.gradClip,opt.gradClip)
end
if opt.optOpt==0 then
optim.sgd(feval_p, parameters, optimState)
elseif opt.optOpt==1 then
optim.adam(feval_p, parameters, optimState)
end
end
if (batchNumber+1) % opt.iter_size == 0 then -- display
-- Calculate top-1 error, and print information
top1_epoch = top1_epoch + top1_p/opt.iter_size;
top1_p = top1_p * 100 / opt.batchSize/opt.iter_size;
err1_p = err1_p/opt.iter_size;
print(('Epoch: [%d][%d-%d/%d]\tTime %.3f Err %.4f Top1-%%: %.2f LR %.0e DTime %.3f'):format(
epoch, math.ceil((1+batchNumber)/opt.iter_size), batchNumber%opt.iter_size, opt.epochSize, timer:time().real, err1_p, top1_p,
optimState.learningRate, dataLoadingTime_p))
dataTimer:reset()
loss_epoch = loss_epoch + err1_p
end
batchNumber = batchNumber + 1
end